104 research outputs found

    Simulation of cellular irradiation with the CENBG microbeam line using GEANT4

    Full text link
    Light-ion microbeams provide a unique opportunity to irradiate biological samples at the cellular level and to investigate radiobiological effects at low doses of high LET ionising radiation. Since 1998 a single-ion irradiation facility has been developed on the focused horizontal microbeam line of the CENBG 3.5 MV Van de Graaff accelerator. This setup delivers in air single protons and alpha particles of a few MeV onto cultured cells, with a spatial resolution of a few microns, allowing subcellular targeting. In this paper, we present results from the use of the GEANT4 toolkit to simulate cellular irradiation with the CENBG microbeam line, from the entrance to the microprobe up to the cellular medium.Comment: 6 pages, 8 figures, presented at the 2003 IEEE-NSS conference, Portland, OR, USA, October 20-24, 200

    Microcanonical Lattice Gas Model for Nuclear Disassembly

    Get PDF
    Microcanonical calculations are no more difficult to implement than canonical calculations in the Lattice Gas Model. We report calculations for a few observables where we compare microcanonical model results with canonical model results.Comment: 7 pages, Revtex, 3 postscript figure

    First results obtained using the CENBG nanobeam line: performances and applications

    Get PDF
    A high resolution focused beam line has been recently installed on the AIFIRA (“Applications Interdisciplinaires des Faisceaux d’Ions en Région Aquitaine”) facility at CENBG. This nanobeam line, based on a doublet–triplet configuration of Oxford Microbeam Ltd. OM-50™ quadrupoles, offers the opportunity to focus protons, deuterons and alpha particles in the MeV energy range to a sub-micrometer beam spot. The beam optics design has been studied in detail and optimized using detailed ray-tracing simulations and the full mechanical design of the beam line was reported in the Debrecen ICNMTA conference in 2008. During the last two years, the lenses have been carefully aligned and the target chamber has been fully equipped with particle and X-ray detectors, microscopes and precise positioning stages. The beam line is now operational and has been used for its firstapplications to ion beam analysis. Interestingly, this set-up turned out to be a very versatile tool for a wide range of applications. Indeed, even if it was not intended during the design phase, the ion optics configuration offers the opportunity to work either with a high current microbeam (using the triplet only) or with a lower current beam presenting a sub-micrometer resolution (using the doublet–triplet configuration). The performances of the CENBGnanobeam line are presented for both configurations. Quantitative data concerning the beam lateral resolutions at different beam currents are provided. Finally, the firstresults obtained for different types of application are shown, including nuclear reaction analysis at the micrometer scale and the firstresults on biological sample

    Technical developments for computed tomography on the CENBG nanobeam line

    Get PDF
    The use of ion microbeams as probes for computedtomography has proven to be a powerful tool for the three-dimensional characterization of specimens a few tens of micrometers in size. Compared to other types of probes, the main advantage is that quantitative information about mass density and composition can be obtained directly, using specific reconstruction codes. At the Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG), this technique was initially developed for applications in cellular biology. However, the observation of the cell ultrastructure requires a sub-micron resolution. The construction of the nanobeamline at the Applications Interdisciplinaires des Faisceaux d’Ions en Region Aquitaine (AIFIRA) irradiation facility has opened new perspectives for such applications. The implementation of computedtomography on the nanobeamline of CENBG has required a careful design of the analysis chamber, especially microscopes for precise sample visualization, and detectors for scanning transmission ion microscopy (STIM) and for particle induced X-ray emission (PIXE). The sample can be precisely positioned in the three directions X, Y, Z and a stepper motor coupled to a goniometer ensures the rotational motion. First images of 3D tomography were obtained on a reference sample containing microspheres of certified diameter, showing the good stability of the beam and the sample stage, and the precision of the motion

    Fragment size correlations in finite systems - application to nuclear multifragmentation

    Full text link
    We present a new method for the calculation of fragment size correlations in a discrete finite system in which correlations explicitly due to the finite extent of the system are suppressed. To this end, we introduce a combinatorial model, which describes the fragmentation of a finite system as a sequence of independent random emissions of fragments. The sequence is accepted when the sum of the sizes is equal to the total size. The parameters of the model, which may be used to calculate all partition probabilities, are the intrinsic probabilities associated with the fragments. Any fragment size correlation function can be built by calculating the ratio between the partition probabilities in the data sample (resulting from an experiment or from a Monte Carlo simulation) and the 'independent emission' model partition probabilities. This technique is applied to charge correlations introduced by Moretto and collaborators. It is shown that the percolation and the nuclear statistical multifragmentaion model ({\sc smm}) are almost independent emission models whereas the nuclear spinodal decomposition model ({\sc bob}) shows strong correlations corresponding to the break-up of the hot dilute nucleus into nearly equal size fragments

    Scaling in the Lattice Gas Model

    Get PDF
    A good quality scaling of the cluster size distributions is obtained for the Lattice Gas Model using the Fisher's ansatz for the scaling function. This scaling identifies a pseudo-critical line in the phase diagram of the model that spans the whole (subcritical to supercritical) density range. The independent cluster hypothesis of the Fisher approach is shown to describe correctly the thermodynamics of the lattice only far away from the critical point.Comment: 4 pages, 3 figure

    Beating of monopole modes in nuclear dynamics

    Get PDF
    Time-dependent Hartree-Fock simulations of the evolution of excited gold fragments have been performed. The observed dynamics appears more complex than the collective expansion picture. The minimum density is often not reached during the first density oscillation because of the beating of several collective compression modes.Comment: 14 Latex pages including 4 figures. Nucl. Phys. A (in press

    Size Matters: Origin of Binomial Scaling in Nuclear Fragmentation Experiments

    Get PDF
    The relationship between measured transverse energy, total charge recovered in the detector, and size of the emitting system is investigated. Using only very simple assumptions, we are able to reproduce the observed binomial emission probabilities and their dependences on the transverse energy.Comment: 14 pages, including 4 figure

    Time-Dependent Hartree-Fock simulation of the expansion of abraded nuclei

    Full text link
    A recent interpretation of the caloric curve based on the expansion of the abraded spectator nucleus is re-analysed in the framework of the Time-Dependent Hartree-Fock (TDHF) evolution. It is shown that the TDHF dynamics is more complex than a single monopolar collective motion at moderate energy. The inclusion of other important collective degrees of freedom may lead to the dynamical creation of hollow structure. Then, low density regions could be locally reached after a long time by the creation of these exotic density profiles. In particular the systematic of the minimum density reached during the expansion (the so-called turning points) appears to be different.Comment: 30 Latex pages including 9 figure
    • …
    corecore