20,702 research outputs found

    Fast-to-Alfv\'en mode conversion mediated by Hall current. II Application to the solar atmosphere

    Full text link
    Coupling between fast magneto-acoustic and Alfv\'en waves can be observe in fully ionized plasmas mediated by stratification and 3D geometrical effects. In Paper I, Cally & Khomenko (2015) have shown that in a weakly ionized plasma, such as the solar photosphere and chromosphere, the Hall current introduces a new coupling mechanism. The present study extends the results from Paper I to the case of warm plasma. We report on numerical experiments where mode transformation is studied using quasi-realistic stratification in thermodynamic parameters resembling the solar atmosphere. This redresses the limitation of the cold plasma approximation assumed in Paper I, in particular allowing the complete process of coupling between fast and slow magneto-acoustic modes and subsequent coupling of the fast mode to the Alfv\'en mode through the Hall current. Our results confirm the efficacy of the mechanism proposed in Paper I for the solar case. We observe that the efficiency of the transformation is a sensitive function of the angle between the wave propagation direction and the magnetic field, and of the wave frequency. The efficiency increases when the field direction and the wave direction are aligned for increasing wave frequencies. After scaling our results to typical solar values, the maximum amplitude of the transformed Alfv\'en waves, for a frequency of 1 Hz, corresponds to an energy flux (measured above the height of peak Hall coupling) of ∼103\sim10^3 W m−2\rm W\,m^{-2}, based on an amplitude of 500 m s−1\rm m\,s^{-1} at β=1\beta=1, which is sufficient to play a major role in both quiet and active region coronal heating

    Partition Functions of Pure Spinors

    Full text link
    We compute partition functions describing multiplicities and charges of massless and first massive string states of pure-spinor superstrings in 3,4,6,10 dimensions. At the massless level we find a spin-one gauge multiplet of minimal supersymmetry in d dimensions. At the first massive string level we find a massive spin-two multiplet. The result is confirmed by a direct analysis of the BRST cohomology at ghost number one. The central charges of the pure spinor systems are derived in a manifestly SO(d) covariant way confirming that the resulting string theories are critical. A critical string model with N=(2,0) supersymmetry in d=2 is also described.Comment: LaTex, 30 p

    Coercivity reduction in a two-dimensional array of nanoparticles

    Full text link
    We report on theoretical investigation of the magnetization reversal in two-dimensional arrays of ferromagnetic nano-particles with parameters of cobalt. The system was optimized for achieving the lowest coercivity in an array of particles located in the nodes of triangular, hexagonal and square grids. Based on the numerical solution of the non-stochastic Landau-Lifshitz-Gilbert equation we show that each particle distribution type is characterized with a proper optimal distance, allowing to lower the coercivity values for approximately 30% compared with the reference value obtained for a single nano-particle. It was shown that the reduction of coercivity occurs even if the particle position in the array is not very precise. In particular, the triangular particle arrangement maintained the same optimal distance between the particles under up to 20% random displacements of their position within the array.Comment: 7 pages, 5 figure

    Ratchet behavior in nonlinear Klein-Gordon systems with point-like inhomogeneities

    Get PDF
    We investigate the ratchet dynamics of nonlinear Klein-Gordon kinks in a periodic, asymmetric lattice of point-like inhomogeneities. We explain the underlying rectification mechanism within a collective coordinate framework, which shows that such system behaves as a rocking ratchet for point particles. Careful attention is given to the kink width dynamics and its role in the transport. We also analyze the robustness of our kink rocking ratchet in the presence of noise. We show that the noise activates unidirectional motion in a parameter range where such motion is not observed in the noiseless case. This is subsequently corroborated by the collective variable theory. An explanation for this new phenomenom is given

    Anderson Localization in Disordered Vibrating Rods

    Full text link
    We study, both experimentally and numerically, the Anderson localization phenomenon in torsional waves of a disordered elastic rod, which consists of a cylinder with randomly spaced notches. We find that the normal-mode wave amplitudes are exponentially localized as occurs in disordered solids. The localization length is measured using these wave amplitudes and it is shown to decrease as a function of frequency. The normal-mode spectrum is also measured as well as computed, so its level statistics can be analyzed. Fitting the nearest-neighbor spacing distribution a level repulsion parameter is defined that also varies with frequency. The localization length can then be expressed as a function of the repulsion parameter. There exists a range in which the localization length is a linear function of the repulsion parameter, which is consistent with Random Matrix Theory. However, at low values of the repulsion parameter the linear dependence does not hold.Comment: 10 pages, 6 figure

    Optimization of soliton ratchets in inhomogeneous sine-Gordon systems

    Get PDF
    Unidirectional motion of solitons can take place, although the applied force has zero average in time, when the spatial symmetry is broken by introducing a potential V(x)V(x), which consists of periodically repeated cells with each cell containing an asymmetric array of strongly localized inhomogeneities at positions xix_{i}. A collective coordinate approach shows that the positions, heights and widths of the inhomogeneities (in that order) are the crucial parameters so as to obtain an optimal effective potential UoptU_{opt} that yields a maximal average soliton velocity. UoptU_{opt} essentially exhibits two features: double peaks consisting of a positive and a negative peak, and long flat regions between the double peaks. Such a potential can be obtained by choosing inhomogeneities with opposite signs (e.g., microresistors and microshorts in the case of long Josephson junctions) that are positioned close to each other, while the distance between each peak pair is rather large. These results of the collective variables theory are confirmed by full simulations for the inhomogeneous sine-Gordon system

    Authors' reply to Colquhoun and Buchinsky

    Get PDF
    No abstract available

    An amplitude-phase (Ermakov-Lewis) approach for the Jackiw-Pi model of bilayer graphene

    Get PDF
    In the context of bilayer graphene we use the simple gauge model of Jackiw and Pi to construct its numerical solutions in powers of the bias potential V according to a general scheme due to Kravchenko. Next, using this numerical solutions, we develop the Ermakov-Lewis approach for the same model. This leads us to numerical calculations of the Lewis-Riesenfeld phases that could be of forthcoming experimental interest for bilayer graphene. We also present a generalization of the Ioffe-Korsch nonlinear Darboux transformationComment: FTC, 11 pp, 5 figure

    Chaos around Holographic Regge Trajectories

    Get PDF
    Using methods of Hamiltonian dynamical systems, we show analytically that a dynamical system connected to the classical spinning string solution holographically dual to the principal Regge trajectory is non-integrable. The Regge trajectories themselves form an integrable island in the total phase space of the dynamical system. Our argument applies to any gravity background dual to confining field theories and we verify it explicitly in various supergravity backgrounds: Klebanov-Strassler, Maldacena-Nunez, Witten QCD and the AdS soliton. Having established non-integrability for this general class of supergravity backgrounds, we show explicitly by direct computation of the Poincare sections and the largest Lyapunov exponent, that such strings have chaotic motion.Comment: 28 pages, 5 figures. V3: Minor changes complying to referee's suggestions. Typos correcte
    • …
    corecore