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Abstract

Using methods of Hamiltonian dynamical systems, we show analytically that a dy-

namical system connected to the classical spinning string solution holographically dual

to the principal Regge trajectory is non-integrable. The Regge trajectories themselves

form an integrable island in the total phase space of the dynamical system. Our argu-

ment applies to any gravity background dual to confining field theories and we verify it

explicitly in various supergravity backgrounds: Klebanov-Strassler, Maldacena-Núñez,

Witten QCD and the AdS soliton. Having established non-integrability for this gen-

eral class of supergravity backgrounds, we show explicitly by direct computation of the

Poincaré sections and the largest Lyapunov exponent, that such strings have chaotic

motion.
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1 Introduction

The fact that the quantum numbers of certain operators or states in field theory can be well

described by the corresponding classical string is the idea at the heart of Regge trajectories

where the hadronic relationship J ∼ M2 is realized by a spinning string. This fact has a

long history dating back to the Chew-Frautschi plots [1]. In the context of the AdS/CFT

correspondence a better understanding of the role played by classical trajectories has been

at the center of a substantial part of recent developments. More generally, the AdS/CFT

correspondence provides a dictionary that identifies states in string theory with operators in

field theory. One of the most prominent examples is provided by the Berenstein-Maldacena-

Nastase (BMN) operators. The BMN operators [2] can be described as a string moving at

the speed of light in the large circle of S5, the operator corresponding to the ground states

is given by OJ = (1/
√
JNJ)Tr ZJ . Another interesting class of operators which are nicely

described as semiclassical strings in the AdS5 × S5 background are the Gubser-Klebanov-

Polyakov (GKP) operators discussed in [3]. They are natural generalizations of twist-two

operators in QCD and in the context of N = 4 supersymmetric Yang-Mills they look like

TrΦI∇(a1 . . .∇an)Φ
I . A very important property of these operators is that their anomalous

dimension can be computed using a simple classical calculation and yields a prediction for

the result at strong coupling ∆ − S = (
√
λ/π) lnS. This expression is similar to the QCD

relation obtained originally by Gross and Wilczek [4].

Right after the original formulation of the AdS/CFT correspondence [5, 6, 7, 8] an impor-

tant direction emerged surrounding the question of how to approach more realistic theories

using the methods of the gauge/gravity correspondence. There is by now a well established

body of results in this direction. In particular, general conditions on the supergravity back-

grounds have been found that correspond to the existence of the area law for the Wilson

loop in the field theory [9]. Similarly, the classical string configuration corresponding to the

Regge trajectories have been extensively studied.

In this paper we study properties of a configuration of classical strings in supergravity

backgrounds dual to confining field theories. Our study goes beyond particular trajectories
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and explores the phase space. We show that a class of strings that naturally generalizes

those corresponding to Regge trajectories is non-integrable. Further, we show explicitly that

the motion of such strings is chaotic with the Regge trajectories being an integrable island

in the phase space. It turns out that technically the problem is similar to the study of the

spectrum of quadratic fluctuations. The study of quantum corrections to Regge trajectories

in the context of the AdS/CFT correspondence was initiated in [10] and was extended to

other backgrounds [11]. Other recent studies of chaotic behavior of classical strings in the

context of the gauge/gravity correspondence include [12, 13, 14, 15]. We will in particular

draw on modern Hamiltonian methods used in [15] and the concrete discussion of the AdS

soliton background presented in [13].

One of the questions driving our program is how to interpret chaos in AdS/CFT, that

is, what is the field theory dual of chaotic quantities? We ask whether we can test some

of the ideas in the context of confinement. Are there any universal features of various

confining theories? We come up with a unified approach to study integrability in a class

of confining backgrounds that include many of the commonly-cited examples of confining

geometries like Klebanov-Strassler, Maldacena-Núñez, Witten QCD and AdS-soliton. QCD,

in the asymptotic free regime, has been argued to be possibly integrable. One particularly

important lead in this direction comes from the integrable Regge trajectories. However

our results show that the Regge trajectories are just integrable islands in a wider sea of

nonintegrability. One is naturally led to ask the question whether there are more similar

subdomains of integrability. In this work, we answer some of the questions above, while

some of them still remain open.

The rest of the paper is organized as follows. In section 2 we consider two classes of closed

spinning strings and discuss some of their properties in supergravity backgrounds dual to

confining field theories. In section 3, for the sake of the readers, we review the main results

of the literature of analytic non-integrability of Hamiltonian systems. In that section we

also show that the motion of the string in supergravity backgrounds dual to confining field

theories is non-integrable using analytic methods. Since analytic non-integrability is not a

sufficient condition for chaotic behavior, we study numerically a particular background and
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show strong evidence of chaotic behavior in section 4. We conclude in section 5. In appendix

A we present the main equation in the non-integrability paradigm of various supergravity

backgrounds dual to known confining field theories.

2 Closed spinning strings in supergravity backgrounds

The Polyakov action and the Virasoro constraints characterizing the classical motion of the

fundamental string are:

L = − 1

2πα′
√
−ggabGMN∂aX

M∂bX
N , (2.1)

where GMN is the spacetime metric of the fixed background, Xµ are the coordinates of

the string, gab is the worldsheet metric, the indices a, b represent the coordinates on the

worldsheet of the string which we denote as (τ, σ). We will use to work in the conformal

gauge in which case the Virasoro constraints are

0 = GMNẊ
MX ′N ,

0 = GMN

(
ẊMẊN +X ′MX ′N

)
, (2.2)

where dot and prime denote derivatives with respect to τ and σ respectively.

We are interested in the classical motion of the strings in background metrics GMN that

preserve Poincaré invariance in the coordinates (X0, X i) where the dual field theory lives:

ds2 = a2(r)dxµdx
µ + b2(r)dr2 + c2(r)dΩ2

d. (2.3)

Here xµ = (t, x1, x2, x3) and dΩ2
d represents the metric on a d-dimensional sub-space that,

can also have r-dependent coefficients. In the case of supergravity backgrounds in IIB, we

have d = 5 but we leave it arbitrary to also accommodate backgrounds in 11-d supergravity

in which case d = 6.
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The relevant classical equations of motion for the string sigma model in this background

are

∂a(a
2(r)ηab∂bx

µ) = 0,

∂a(b
2(r)ηab∂br) =

1

2
∂r(a

2(r))ηab∂axµ∂bx
µ +

1

2
∂r(b

2(r))ηab∂ar∂br.

(2.4)

They are supplemented by the Virasoro constraints. We will construct spinning strings by

starting with the following Ansatz (Ansatz I):

x0 = e τ,

x1 = f1(τ) g1(σ), x2 = f2(τ) g2(σ),

x3 = constant, r = r(σ). (2.5)

We will also consider a slight modification of the above Ansatz as follows (Ansatz II):

x0 = e τ,

x1 = f1(τ) g1(σ), x2 = f2(τ) g2(σ),

x3 = constant, r = r(τ). (2.6)

The main modification is that the radial coordinate is now a function of the worldsheet time

r = r(τ).

With Ansatz I (2.5) the equation of motion for x0 is trivially satisfied. Let us first show

that the form of the functions fi is fairly universal for this Ansatz. The equation of motion

for xi is

− a2 gif̈i + fi∂σ(a2g′i) = 0, (2.7)

where a dot denotes a derivative with respect to τ and a prime denotes a derivative with

respect to σ. Enforcing a natural separation of variables we see that

f̈i + (e ω)2fi = 0, ∂σ(a2 g′i) + (e ω)2a2gi = 0. (2.8)
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The radial equation of motion is

(b2r′)′ =
1

2
∂r(a

2)[e2 − g2
i ḟ

2
i + f 2

i g
′2
i ] +

1

2
∂r(b

2)r′2. (2.9)

Finally the nontrivial Virasoro constraint becomes

b2r′2 + a2[− e2 + g2
i ḟ

2
i + f 2

i g
′2
i ] = 0. (2.10)

We are particularly interested in the integrals of motion describing the energy and the angular

momentum

E =
e

2πα′

∫
a2dσ, (2.11)

J =
1

2πα′

∫
a2[x1∂τx2 − x2∂τx1]dσ =

1

2πα′

∫
a2g1g2[f1∂τf2 − f2∂τf1]dσ (2.12)

The above system can be greatly simplified by further taking the following particular solution:

f1 = cos eω τ, f2 = sin eω τ, and g1 = g2 = g. (2.13)

Under these assumptions the equation of motion for r and the Virasoro constraint become

(b2r′)′ − 1

2
∂r(a

2)[e2 − (eω)2 g2 + g′2]− 1

2
∂r(b

2)r′2 = 0, (2.14)

b2r′2 + a2[− e2 + (eω)2 g2 + g′2] = 0. (2.15)

The angular momentum is then

J =
eω

2πα′

∫
a2g2dσ. (2.16)

Since we are working in Poincaré coordinates the quantity canonically conjugate to time is

the energy of the corresponding state in the four dimensional theory. The angular momentum

of the string describes the spin of the corresponding state. Thus a spinning string in the

Poincaré coordinates is dual to a state of energy E and spin J . In order for our semiclassical

approximation to be valid we need the value of the action to be large, this imply that we

are considering gauge theory states in the IR region of the gauge theory with large spin and

large energy. In the cases we study, expressions (2.11) and (2.16) yield a dispersion relation

that can be identified with Regge trajectories.
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2.1 Regge trajectories from closed spinning strings in confining

backgrounds

Let us show that there exists a simple solution of the equations of motion (2.14) for any

gravity background dual to a confining gauge theory. The conditions for a SUGRA back-

ground to be dual to a confining theory have been exhaustively explored [9] using the fact

that the corresponding Wilson loop in field theory should exhibit area law behavior. The

main idea is to translate the condition for the vev of the rectangular Wilson loop to display

an area law into properties that the metric of the supergravity background must satisfy

through the identification of the vacuum expectation value of the Wilson loop with the value

of the action of the corresponding classical string. It has been established that one set of

necessary conditions is for g00 to have a nonzero minimum at some point r0 usually known as

the end of the space wall [9]. Note that precisely these two conditions ensure the existence

of a solution of (2.14). Namely, since g00 = a2 we see that for a point r = r0 = constant is a

solution if

∂r(g00)|r=r0 = 0, g00|r=r0 6= 0. (2.17)

The first condition solves the first equation in (2.14) and the second condition makes the

second equation nontrivial. Interestingly, the second condition can be interpreted as en-

forcing that the quark-antiquark string tension be nonvanishing as it determines the value

of the string action. It is worth mentioning that due to the UV/IR correspondence in the

gauge/gravity duality the radial direction is identified with the energy scale. In particular,

r ≈ r0 is the gravity dual of the IR in the gauge theory. Thus, the string we are considering

spins in the region dual to the IR of the gauge theory. Therefore we can conclude that it is

dual to states in the field theory that are characteristic of the IR.

Let us now explicitly display the Regge trajectories. The classical solution is given by

(2.5) with g(σ) solving the second equation from (2.14), that is, g(σ) = (1/ω) sin(eωσ).

Imposing the periodicity σ → σ + 2π implies that eω = 1 and hence

x0 = e τ, x1 = e cos τ sin σ, x2 = e sin τ sin σ. (2.18)
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The expressions for the energy and angular momentum of the string states are:

E = 4
e g00(r0)

2πα′

∫
dσ = 2πg00(r0)Tse, J = 4

g00(r0)e2

2πα′

∫
sin2 σdσ = πg00(r0)Tse

2. (2.19)

Defining the effective string tension as Ts, eff = g00(r0)/(2πα′) and α′eff = α′/g00 we find

that the Regge trajectories take the form

J =
1

4πTs, eff
E2 ≡ 1

2
α′eff t. (2.20)

Notice that the main difference with respect to the result in flat space dating back to the

hadronic models of the sixties is that the slope is modified to α′eff = α′/g00. It is expected

that a confining background will have states that align themselves in Regge trajectories.

2.2 Ansatz II

In this subsection we consider the Ansatz given in equation (2.6). Note that the analysis

given in the previous sections can be applied mutatis mutandis to this Ansatz. In particular,

the separation of variables described in equation (2.8) can be performed in a symmetric way

and one obtains:

g′′i + α2gi = 0, ∂τ (a
2 ∂τfi) + α2a2 fi = 0. (2.21)

The Ansatz given in (2.6, 2.13) becomes

t = t(τ), r = r(τ),

x1 = R(τ) sinασ, x2 = R(τ) cosασ. (2.22)

The Polyakov action is:

L ∝ a2(r)[− ṫ2 + Ṙ2 − α2R2] + b2(r)ṙ2. (2.23)

The above Ansatz satisfies the first constraint automatically and the second constraint leads

to a Hamiltonian constraint:

a2(r)[ṫ2 + Ṙ2 + α2R2] + b2(r)ṙ2 = 0 . (2.24)
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We also have that

ṫ = E/a2(r), (2.25)

where E is an integration constant. This gives

L ∝ − E2

a2(r)
+ a2(r)[Ṙ2 − α2R2] + b2(r)ṙ2 . (2.26)

From the above Lagrangian density the equations of motion for r(τ) and R(τ) are

d

dτ

(
b2(r)

d

dτ
r(τ)

)
=

E2

a3(r)

d

dr
a(r) + a(r)

d

dr
a(r)[Ṙ2 − α2R2] + b(r)

d

dr
b(r)(

d

dτ
r)2,

d

dτ

(
a2(r)

d

dτ
R(τ)

)
= −α2a2(r)R(τ). (2.27)

We can once again check the claim that for confining backgrounds there is always a con-

fining wall which defines a straight line solution. Since one can always argue for confining

backgrounds,

a(r) ≈ a0 − a2(r − r0)2. (2.28)

It is easily seen that in this region both equations above can be satisfied. The equation for

r(τ) is satisfied by r = r0 and dr/dτ = 0. The solution for R(τ) is simply

d2

dτ 2
R(τ) + α2R(τ) = 0,−→ R(τ) = A sin(ατ + φ0). (2.29)

This is precisely the solution discussed in the previous section that corresponds to the Regge

trajectories in the dual field theory.

3 Analytic Non-integrability: From Ziglin to Galois

Theory

Let us review, for the benefit of the reader, the main statements of the area of analytic

non-integrability [16, 17, 18]. First, the term analytic is identified with meromorphic. A

meromorphic function on an open subset D of the complex plane is a function that is holo-

morphic on all D except a set of isolated points, which are poles of the function. The central
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place in the study of integrability and non-integrability of dynamical systems is occupied by

ideas developed in the context of the KAM theory. The KAM theorem describes how an

integrable system reacts to small deformations. The loss of integrability is readily charac-

terized by the resonant properties of the corresponding phase space tori, describing integrals

of motion in the action-angle variables. These ideas were already present in Kovalevskaya’s

work but were made precise in the context of KAM theory.

Consider a general system of differential equations ~̇x = ~f(~x). The general basis for

proving nonintegrability of such a system is the analysis of the variational equation around

a particular solution x̄ = x̄(t) which is called the straight line solution. The variational

equation around x̄(t) is a linear system obtained by linearizing the vector field around x̄(t).

If the nonlinear system admits some first integrals so does the variational equation. Thus,

proving that the variational equation does not admit any first integral within a given class

of functions implies that the original nonlinear system is nonintegrable. In particular when

one works in the analytic setting where inverting the straight line solution x̄(t), one obtains

a (noncompact) Riemann surface Γ given by integrating dt = dw/ ˙̄x(w) with the appropriate

limits. Linearizing the system of differential equations around the straight line solution yields

the Normal Variational Equation (NVE), which is the component of the linearized system

which describes the variational normal to the surface Γ.

The methods described here are useful for Hamiltonian systems, luckily for us, the Vi-

rasoro constraints in string theory provide a Hamiltonian for the systems we consider. This

is particularly interesting as the origin of this constraint is strictly stringy but allows a very

intuitive interpretation from the dynamical system perspective. One important result at the

heart of a analytic non-integrability are Ziglin’s theorems. Given a Hamiltonian system, the

main statement of Ziglin’s theorems is to relate the existence of a first integral of motion

with the monodromy matrices around the straight line solution [19, 20]. The simplest way

to compute such monodromies is by changing coordinates to bring the normal variational

equation into a known form (hypergeometric, Lamé, Bessel, Heun, etc). Basically one needs

to compute the monodromies around the regular singular points. For example, in the case

where the NVE is a Gauss hypergeometric equation z(1− z)ξ′′+ (3/4)(1 + z)ξ′+ (a/8)ξ = 0,
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the monodromy matrices can be expressed in terms of the product of monodromy matrices

obtained by taking closed paths around z = 0 and z = 1. In general the answer depends

on the parameters of the equation, that is, on a above. Thus, integrability is reduced to

understanding the possible ranges of the parameter a.

Morales-Ruiz and Ramis proposed a major improvement on Ziglin’s theory by introduc-

ing techniques of differential Galois theory [21, 22, 23]. The key observation is to change the

formulation of integrability from a question of monodromy to a question of the nature of the

Galois group of the NVE. In more classical terms, going back to Kovalevskaya’s formulation,

we are interested in understanding whether the KAM tori are resonant or not. In simpler

terms, if their characteristic frequencies are rational or irrational (see the pedagogical intro-

ductions provided in [17, 24]). This statement turns out to be dealt with most efficiently in

terms of the Galois group of the NVE. The key result is now stated as: If the differential

Galois group of the NVE is non-virtually Abelian, that is, the identity connected component

is a non-Abelian group, then the Hamiltonian system is non-integrable. The calculation of

the Galois group is rather intricate, as was the calculation of the monodromies, but the

key simplification comes through the application of Kovacic’s algorithm [25]. Kovacic’s al-

gorithm is an algorithmic implementation of Picard-Vessiot theory (Galois theory applied

to linear differential equations) for second order homogeneous linear differential equations

with polynomial coefficients and gives a constructive answer to the existence of integrability

by quadratures. Kovacic’s algorithm is implemented in most computer algebra software in-

cluding Maple and Mathematica. It is a little tedious but straightforward to go through the

steps of the algorithm manually. So, once we write down our NVE in a suitable linear form

it becomes a simple task to check their solvability in quadratures. An important property of

the Kovacic’s algorithm is that it works if and only if the system is integrable, thus a failure

of completing the algorithm equates to a proof of non-integrability. This route of declaring

systems non-integrable has been successfully applied to various situations, some interesting

examples include: [26, 27, 28, 29]. See also [30] for nonintegrability of generalizations of

the Hénon-Heiles system [24]. A nice compilation of examples can be found in [17]. In the

context of string theory it was first applied in [15].
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3.1 Analytic Nonintegrability in Confining Backgrounds

3.1.1 Ansatz II

For confining backgrounds we have that the conditions on g00 described in (2.17) imply that:

a(r) ≈ a0 − a2(r − r0)2, (3.1)

where a0 is the nonzero minimal value of g00(r0) and the absence of a linear terms indicates

that the first derivative at r0 vanishes.

In this region is easy to show that both equations in (2.27) can be satisfied. The equation

for r(τ) is satisfied by r = r0 and dr/dτ = 0. The straight line equation for R(τ) is simply

d2

dτ 2
R(τ) + α2R(τ) = 0,−→ R(τ) = A sin(ατ + φ0). (3.2)

We can now write down the NVE equation by considering an expansion around the

straight line solution, that is,

r = r0 + η(τ). (3.3)

We obtain

η̈ +
a2E

2

2b2
0a

3
0

[
1 +

2α2A2a4
0

E2
cos 2ατ

]
η = 0. (3.4)

The question of integrability of the system (2.27) has now turned into whether or not the

NVE above can be solved in quadratures. The above equation can be easily recognized as the

Mathieu equation. The analysis above has naturally appeared in the context of quantization

of Regge trajectories and other classical string configurations. For example, [10, 11] derived

precisely such equation in the study of quantum corrections to the Regge trajectories, those

work went on to compute one-loop corrections in both, fermionic and bosonic sectors. Our

goal here is different, for us the significance of (3.4) is as the Normal Variational Equation

around the dynamical system (2.27) whose study will inform us about the integrability of

the system.

The solution to the above equation (3.4) in terms of Mathieu functions is

η(τ) = c1 C(
θ

α2
,
θβ

2α2
, α τ) + c2 S(

θ

α2
,
θβ

2α2
, α τ), (3.5)
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where c1 and c2 are constants and

θ =
a2E

2

2b2
0a

3
0

, β =
2α2A2a4

0

E2
. (3.6)

A beautiful description of a similar situation is presented in [31] where non-integrability of

some Hamiltonians with rational potentials is discussed. In particular, the extended Mathieu

equation is considered as an NVE equation

ÿ = (a+ b sin t+ c cos t)y. (3.7)

Our equation 3.4 is of this form with 2ατ → t and b = 0. To aid the mathematically minded

reader, and to make connection with our introduction to non-integrability in the beginning

of section 3, we show that the extended Mathieu equation can be brought to an algebraic

form using x = eit which leads to:

y′′ +
1

x
y′ +

(b+ c)x2 + 2ax+ c− b
2x3

y = 0. (3.8)

The above equation is perfectly ameanable to the application of Kovacic’s algorithm. It

was shown explicitly in [31] that our case (b 6= −c above) corresponds to a non-integrable

equation. More precisely, the Galois group is the connected component of SL(2,C) and the

identity component of the Galois group for (3.7) is exactly SL(2,C), which is a non-Abelian

group.

4 Explicit Chaotic Behavior

Analytic non-integrability does not, by itself, imply the presence of chaotic behavior. To

logically close the circle we should also show chaotic behavior explicitly by computing chaos

indicators such as Poincaré sections and the largest Lyapunov exponent. Conveniently, the

work of some of the authors showed precisely just that. Namely, in [13] it was shown that

the spinning string in the AdS soliton supergravity background, which is a background

in the class of confining backgrounds we are interested in, is chaotic . Since a separate an
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exhaustive publication was devoted to strings in the AdS soliton background here we focus in

the Maldacena-Núñez background and show explicitly that non-integrability is accompanied

by positive indicators of chaos. We find a rather unifying pictures as both systems behave

analogously. Our explicit work provides strong evidence that, indeed, the dynamical system

of the classical string which include the Regge trajectory as a particular point in phase space

is chaotic.

The expression for the functions a and b in the main dynamical system (2.27) can be

read directly from the MN background (A.10)(see appendix for details of the background)

a(r)2 = e−φ0
√

sinh(2r)/2

(r coth 2r − r2

sinh2(2r)
− 1

4
)1/4

, b(r)2 = α′ gsNa(r)2. (4.1)

It is crucial that

lim
r→0

a(r)2 → e−φ0 , (4.2)

which is a nonzero constant that determines the tension of the confining string.

4.1 Poincaré sections

An integrable system has the same number of conserved quantities as degrees of freedom.

A convenient way to understand these conserved charges is by looking at the phase space

using action-angle variables. Let us assume that we have a system with N position variables

qi with conjugate momenta pi. The phase space is 2N -dimensional. Integrability means

that there are N conserved charges Qi = fi(p, q) which are constants of motion. One of

them is the energy. These charges define a N -dimensional surface in phase space which is a

topological torus (KAM torus). The 2N -dimensional phase space is nicely foliated by these

N -dimensional tori. In terms of action-angle variables (Ii, θi) these tori just become surfaces

of constant action.

It is interesting to study what happens to these tori when an integrable Hamiltonian is

perturbed by a small nonintegrable piece. The KAM theorem states that most tori survive,

but suffer a small deformation [32, 33]. However the resonant tori which have rational ratios

of frequencies, i.e. miωi = 0 with m ∈ Q, get destroyed and motion on them become chaotic.
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For small values of the nonintegrable perturbations, these chaotic regions span a very small

portion of the phase space and are not readily noticeable in a numerical study. As the

strength of the nonintegrable interaction increases, more tori gradually get destroyed. A

nicely foliated picture of the phase space is no longer applicable and the trajectories freely

explore the entire phase space with energy as the only constraint. In such cases the motion

is completely chaotic.

To numerically investigate this gradual disappearance of foliation we look at the Poincaré

sections. For our system, the phase space has four variables r, R, pr, pR. If we fix the energy

we are in a three dimensional subspace. Now if we start with some initial condition and time-

evolve, the motion is confined to a two dimensional torus for the integrable case. This two-

dimensional torus intersects the R = 0 hyperplane at a circle. Taking repeated snapshots of

the system as it crosses R = 0 and plotting the value of (r, pr), we can reconstruct this circle.

Furthermore varying the initial conditions (in particular we set R(0) = 0, pr(0) = 0, vary

r(0) and determine pR(0) from the Virasoro constraint), we can expect to get the foliation

structure typical of an integrable system. In the figures below different colors correspond to

different values of r(0). Note that for the MN background the confining wall is located at

r0 = 0 and precisely around that point we see islands of integrability.

The only parameter in the dynamical system is thus E which we might refer as the energy

(being related to the conserved quantity (2.25)). Note that this was precisely the case in the

analysis of spinning strings in the AdS soliton [13]. Indeed we see that for smaller value of

energies (E) which is playing the role of the strength of the non-integrable perturbation in

the language of KAM theory, a distinct foliation structure exists in the phase space [Fig.1(a)],

as at smaller energy the system may be thought as two decoupled oscillators in r and R.

Recall that the oscillator with r0 = 0 corresponds to the Regge trajectory as discussed

previously. However as we increase the energy some tori get dissolved [Figs.1(b),1(c).1(d)].

Although there is no water tight definition of chaos, this destruction of the the KAM tori is

one of the strongest indicators of chaotic behavior. The tori which are destroyed sometimes

get broken down into smaller tori [Figs.1(b),1(c).1(d)]. Eventually the tori disappear and

become a collection of scattered points known as cantori. However the breadths of these
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cantori are restricted by the undissolved tori and other dynamical elements. Usually they do

not span the whole phase space [Figs.1(d)]. The mechanism is very similar to what happens

in well known chaotic systems like Hénon-Heiles models; our figures are very typical and we

refer the reader to the standard text books in this field, for example, [32, 33] for qualitative

comparison.

(a) E = 0.316 (b) E = 0.5

(c) E = 0.71 (d) E = 1.0

Figure 1: Poincaré sections demonstrate breaking of the KAM tori en route to chaos. Each

color represents a different initial condition. For smaller values of E the sections of the KAM

tori are intact curves, except for the resonant ones. The tori near the resonant ones start

breaking as E is increased. For very large values of E all the colors get mixed – this indicates

that all the tori get broken and they fill the entire phase space.

15



4.2 Lyapunov exponent

Let us discuss another important indicator of chaos – the largest Lyapunov exponent. Sensi-

tivity to the initial conditions is one of the most intuitive characteristics of chaotic systems.

More precisely, sensitive dependence on initial conditions means that for some points X

in phase space, there is (at least) one point arbitrarily close to X that diverges from X.

The separation between the two is also a function of the initial location and has the form

∆X(X0, τ). The largest Lyapunov exponent is a quantity that characterizes the rate of

separation of such infinitesimally close trajectories. Formally it is defined as,

λ = lim
τ→∞

lim
∆X0→0

1

τ
ln

∆X(X0, τ)

∆X(X0, 0)
(4.3)

In practice we use an algorithm by Sprott [34], which calculates λ over short intervals and

then takes a time average. We should expect to observe that, as time τ is increased, λ settles

down to oscillate around a given value. For trajectories belonging to the KAM tori, λ is

zero, whereas it is expected to be non-zero for a chaotic orbit. We verify such expectations

for our case. We calculate λ with various initial conditions and parameters. For apparently

chaotic orbits we observe a nicely convergent positive λ [Fig.4.2]. Our emphasis in not so

much in the precise value which might require extensive use of numerical techniques as done

in [12], rather, we are content with showing that the largest Lyapunov exponent is positive.

In figure (4.2) we present a calculation following (4.3) of the largest Lyapunov exponent. We

consider a trajectory with r(0) = 2, R(0) = 1.0, pr(0) = 0, pR(0) = 0 and its neighbor which

differs in phase space by r(0) = r(0) + ε with ε = 10−3.

5 Conclusions

We have established that the motion of certain classical strings in the general class of back-

grounds dual to confining theory is chaotic. We have shown analytically, by means of Hamil-

tonian techniques, that such systems are non-integrable. One important result of our paper

is that non-integrability in confining backgrounds is a direct consequence of the Wilson loop
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Figure 2: The Lyapunov Exponent converges to a positive value of about 0.2.

area law. The conditions (2.17) on the metric, that lead to an area-law behavior of the

dual gauge theory thereby implying confinement [9], are precisely the conditions required

to prove that the string moving in such backgrounds is non-integrable. Non-integrability is

thus central to the approach of AdS/CFT to realistic theories.

Furthermore, we have also shown numerically that in the case of the MN background

the Poincaré sections and the largest Lyapunov exponent return positive tests for chaotic

behavior. Identical results for the AdS soliton background have already been obtained in

[13]. Although, these are the simplest examples in this class of backgrounds that we can

explicitly demonstrate to be chaotic, the same result should apply to all theories in the class.

There are various topics that we find particularly deserving of further attention. We have

established that the classical string trajectory corresponding to the Regge trajectory in field

theory is an attractor point in the dynamical system. This same system contains the GKP

string which is dual to twist-two operators. It would be interesting to explore in full detail

the connection between these two trajectories.

Along similar lines we established in an appendix that Ansatz I can not be chaotic as

the effective dynamical “time” is periodic. There is a priori nothing surprising except from

the fact that the difference between Ansatzë I and II is largely due to r(σ) → r(τ) which

conspicuously looks like a T-duality. This topic is certainly worth exploring.

Lastly, it would be interesting to understand the implication of this classical chaos on the
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Regge trajectories themselves. Recall that the spectrum of quantum systems obtained as

the quantization of systems that in their classical limit are chaotic is quite different from the

spectrum of quantum systems obtained from the quantization of integrable classical systems.

This is particularly interesting due to the potential implications for the spectrum of hadronic

matter.
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A Straight line solution and NVE in Confining Back-

grounds

In this appendix we show explicitly that the prototypical supergravity backgrounds in the

gauge/gravity correspondence conform to the analysis presented in the main text. We con-

sider the KS and MN backgrounds explicitly.

A.1 The Klebanov-Strassler background

We begin by reviewing the KS background, which is obtained by considering a collection of

N regular and M fractional D3-branes in the geometry of the deformed conifold [35]. The

10-d metric is of the form:

ds2
10 = h−1/2(τ)dXµdX

µ + h1/2(τ)ds2
6 , (A.1)

where ds2
6 is the metric of the deformed conifold:
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ds2
6 =

1

2
ε4/3K(τ)

[
1

3K3(τ)
(dτ 2 +(g5)2)+cosh2

(τ
2

)
[(g3)2 +(g4)2]+sinh2

(τ
2

)
[(g1)2 +(g2)2]

]
.

(A.2)

where

K(τ) =
(sinh(2τ)− 2τ)1/3

21/3 sinh τ
, (A.3)

and

g1 =
1√
2

[− sin θ1dφ1 − cosψ sin θ2dφ2 + sinψdθ2],

g2 =
1√
2

[dθ1 − sinψ sin θ2dφ2 − cosψdθ2],

g3 =
1√
2

[− sin θ1dφ1 + cosψ sin θ2dφ2 − sinψdθ2],

g4 =
1√
2

[dθ1 + sinψ sin θ2dφ2 + cosψdθ2 ],

g5 = dψ + cos θ1dφ1 + cos θ2dφ2. (A.4)

The warp factor is given by an integral expression for h is

h(τ) = α
22/3

4
I(τ) = (gsMα′)222/3ε−8/3I(τ) , (A.5)

where

I(τ) ≡
∫ ∞
τ

dx
x cothx− 1

sinh2 x
(sinh(2x)− 2x)1/3 . (A.6)

The above integral has the following expansion in the IR:

I(τ → 0)→ a0 − a2τ
2 +O(τ 4) , (A.7)

where a0 ≈ 0.71805 and a2 = 22/3 32/3/18. The absence of a linear term in τ reassures us

that we are really expanding around the end of space, where the Wilson loop will find it

more favorable to arrange itself.

19



A.1.1 The straight line solution in KS

We consider the quadratic fluctuations and their influence on the Regge trajectories (2.20).

In the notation used in the bulk of the paper we have:

a2(r) = h−1/2(r),

b2(r) =
ε4/3

6K2(r)
h1/2(r). (A.8)

Let us first consider the metric. The part of the metric perpendicular to the world volume,

which is the deformed conifold metric, does not enter in the classical solution which involves

only world volume fields. Noting that the value r0 of section 2.1 is τ = 0, we expand the

deformed conifold up to quadratic terms in the coordinates:

ds2
6 =

ε4/3

22/331/3

[1

2
g2

5 + g2
3 + g2

4 +
1

2
dτ 2 +

τ 2

4
(g2

1 + g2
2)
]
. (A.9)

Let us further discuss the structure of this metric. It is known on very general grounds that

the deformed conifold is a cone over a space that is topologically S3 × S2 [36]. We can see

that the S3 roughly spanned by (g3, g4, g5) has finite size, while the S2 spanned by (g1, g2)

shrinks to zero size at the apex of the deformed conifold. More importantly for us is the fact

that, if we do not allow non-trivial behavior in the directions (g1, g2) they cannot contribute

to the NVE around the straight line solution characterized by τ = 0. Therefore, we have

that the NVE equation for the spinning string in the KS background is precisely of the form

(3.4).

A.2 The Maldacena-Nùñez background

The MN background [37] whose IR regime is associated with N = 1 SYM theory is that of

a large number of D5 branes wrapping an S2. To be more precise: (i) the dual field theory

to this SUGRA background is the N = 1 SYM contaminated with KK modes which cannot

be de–coupled from the IR dynamics, (ii) the IR regime is described by the SUGRA in the

vicinity of the origin where the S2 shrinks to zero size. The full MN SUGRA background
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includes the metric, the dilaton and the RR three-form. It can also be interpreted as uplifting

to ten dimensions a solution of seven dimensional gauged supergravity [38]. The metric and

dilaton of the background are

ds2 = eφ
[
dXadXa + α′gsN(dτ 2 + e2g(τ)(e2

1 + e2
2) +

1

4
(e2

3 + e2
4 + e2

5))
]
,

e2φ = e−2φ0
sinh 2τ

2eg(τ)
,

e2 g(τ) = τ coth 2τ − τ 2

sinh2 2τ
− 1

4
,

(A.10)

where,

e1 = dθ1, e2 = sin θ1dφ1,

e3 = cosψ dθ2 + sinψ sin θ2 dφ2 − a(τ)dθ1,

e4 = − sinψ dθ2 + cosψ sin θ2 dφ2 − a(τ) sin θ1dφ1,

e5 = dψ + cos θ2 dφ2 − cos θ1dφ1, a(τ) =
τ 2

sinh2 τ
. (A.11)

where µ = 0, 1, 2, 3, we set the integration constant eφD0 =
√
gsN .

Note that we use notation where x0, xi have dimension of length whereas ρ and the angles

θ1, φ1, θ2, φ2, ψ are dimensionless and hence the appearance of the α′ in front of the transverse

part of the metric.

A.2.1 The straight line solution in MN

The position referred to as r0 in section (2) is τ = 0. Therefore, we will expand the metric

around that value. Let us first identify some structures in the metric that are similar to the

deformed conifold considered in the previous subsection. Notice that e2
1 + e2

2 is precisely an

S2. Moreover, near τ = 0 we have that e2g ≈ τ 2 +O(τ 4). Thus (τ, e1, e2) span an R3 in the

limit

dτ 2 + e2g(τ)(e2
1 + e2

2). (A.12)
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This means that without exciting the KK modes corresponding to (e1, e2) in our Ansatz

II, the NVE equation is precisely of the form (3.4). Certainly e2
3 + e2

4 + e2
5 parametrizes a

space that is topologically a three sphere fibered over the S2 spanned by (e1, e2). However,

near τ = 0 we have a situation very similar to the structure of the metric in the deformed

conifold. Namely, at τ = 0 there we have that: e5 → g5, e3 →
√

2g4, e4 →
√

2g3 (up to a

trivial identification θ1 → −θ1, φ1 → −φ1). This allows us to identify this combination as a

round S3 of radius 2 and therefore can not alter the form of the NVE (3.4).

A.3 The Witten QCD background

The ten-dimensional string frame metric and dilaton of the Witten QCD model are given by

ds2 = (
u

R
)3/2(ηµνdx

µdxν +
4R3

9u0

f(u)dθ2) + (
R

u
)3/2 du

2

f(u)
+R3/2u1/2dΩ2

4 ,

f(u) = 1− u3
0

u3
, R = (πNgs)

1
3α′

1
2 ,

eΦ = gs
u3/4

R3/4
. (A.13)

The geometry consists of a warped, flat 4-d part, a radial direction u, a circle parameterized

by θ with radius vanishing at the horizon u = u0, and a four-sphere whose volume is instead

everywhere non-zero. It is non-singular at u = u0. Notice that in the u → ∞ limit the

dilaton diverges: this implies that in this limit the completion of the present IIA model has

to be found in M-theory. The background is completed by a constant four-form field strength

F4 = 3R3ω4 , (A.14)

where ω4 is the volume form of the transverse S4.

We will be mainly interested in classical string configurations localized at the horizon

u = u0, since this region is dual to the IR regime of the dual field theory. In this case the

coordinate u is not suitable because the metric written in this coordinate looks singular at

u = u0. Then, as a first step, let us introduce the radial coordinate

r2 =
u− u0

u0

, (A.15)
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so that the metric expanded to quadratic order around r = 0 becomes

ds2 ≈ (
u0

R
)3/2[1 +

3r2

2
](ηµνdx

µdxν) +
4

3
R3/2√u0(dr2 + r2dθ2) +R3/2u

1/2
0 [1 +

r2

2
]dΩ2

4 . (A.16)

A.3.1 The straight line solution in WQCD

In this section we consider the closed string configuration corresponding to the glueball

Regge trajectories. The relevant closed folded spinning string configuration dual to the

Regge trajectories and constituting the straight line solution in our analysis is

X0 = kτ , X1 = k cos τ sinσ , X2 = k sin τ sinσ , (A.17)

and all the other coordinates fixed.

To understand the NVE around the straight line solution given above, we need only look

at (A.16) and realize that the only possible contribution to the NVE given in (3.4) can come

only from KK modes in the S4 of equation (A.16). We conclude that, in this case, as well

the NVE is precisely of the form given in (3.4).

B Comments on Ansatz I

For confining backgrounds we have that the conditions on g00 described in (2.17) imply that:

a(r) ≈ a0 − a2(r − r0)2, (B.1)

where a0 is the nonzero minimal value of g00(r0) and the absence of a linear terms indicates

that the first derivative at r0 vanishes.

In this region is easy to show that both equations above can be satisfied. The equation

for r(σ) is satisfied by r = r0 and dr/dσ = 0. The equation for R(σ) is simply

d2

dσ2
R(σ) + ω2R(σ) = 0,−→ R(σ) = A sin(ωσ + φ0). (B.2)
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We can now write down the NVE equation by considering an expansion around the straight

line solution, that is,

r = r0 + η(σ). (B.3)

We obtain

η′′ − a2E
2

2b2
0a

3
0

[
1− 2ω2A2a4

0

E2
cos 2ωσ

]
η = 0. (B.4)

The question of integrability of the system (2.27) has now turned into whether or not the

NVE above can be solved in quadratures. The above equation can be easily recognized as the

Mathieu equation. The analysis above has naturally appeared in the context of quantization

of Regge trajectories and other classical string configurations. For example, [10, 11] derived

precisely such equation in the study of quantum corrections to the Regge trajectories, those

work went on to compute one-loop corrections in both, fermionic and bosonic sectors. Our

goal here is different, for us the significance of (B.4) is as the Normal Variational Equation

around the dynamical system (2.27) whose study will inform us about the integrability of

the system. The general solution to the above equation is

η(σ) = c1 C(− α

ω2
,− αβ

2ω2
, ω σ) + c2 S(− α

ω2
,− αβ

2ω2
, ω σ), (B.5)

where c1 and c2 are constants and

α =
a2E

2

2b2
0a

3
0

, β =
2ω2A2a4

0

E2
. (B.6)

Notice, crucially, that although the system obtain here is similar to the one discussed in

the main text there is a key difference. Namely, that the effective “time” variable σ is now

periodic. This periodicity precludes us from talking about asymptotic properties which lies

at the heart of chaotic behavior. Most indicators of chaos, the largest Lyapunov exponent

prominently, are based on the late time asymptotics of the system.
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