27 research outputs found

    Cadmium Telluride Quantum Dots as a Fluorescence Marker for Adipose Tissue Grafts

    Get PDF
    Plastic and reconstructive surgeons increasingly apply adipose tissue grafting in a clinical setting, although the anticipation of graft survival is insecure. There are only few tools for tracking transplanted fat grafts in vivo. Murine adipose tissue clusters were incubated with negatively charged, mercaptoproprionic acid-coated cadmium telluride quantumdots (QDs) emitting in the dark red or near infrared. The intracellular localization of QDs was studied by confocal laser scanning microscopy. As a result, the adipose tissue clusters showed a proportional increase in fluorescence with increasing concentrations (1, 10, 16, 30, 50 nM) of cadmium telluride QDs. Laser scanning microscopy demonstrated a membrane bound localization of QDs. Vacuoles and cell nuclei of adipocytes were spared by QDs. We conclude that QDs were for the first time proven intracellular in adult adipocytes and demonstrate a strong fluorescence signal. Therefore, they may play an essential role for in vivo tracking of fat grafts

    Geomagnetism, Paleomagnetism and Electromagnetism Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science

    Get PDF
    This article is composed of three independent commentaries about the state of Integrated, Coordinated, Open, Networked (ICON) principles (Goldman et al., 2021, https://doi.org/10.1002/essoar.10508554.1) in the Geomagnetism, Paleomagnetism, and Electromagnetism (GPE) section and discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: Global collaboration, reproducibility, data sharing and infrastructure; Inclusive equitable, and accessible science: Involvement, challenges, and support of early career, BIPOC, women, LGBTQIA+, and/or disabled researchers; Community engagement, citizen science, education, and stakeholder involvement. Data sharing practices and open repository use still varies strongly between GPE communities. Some have a long tradition of data sharing; others are only starting it. Globally, GPE leadership is strongly dominated by white males and diversity may increase through the creation of Science Equality Commissions. Improved global stakeholder involvement can increase research impacts and help fight inequalities. In all investigated topics we see promising beginnings but also recognize obstacles that include a lack of funding, a lack of understanding of diversity, and prioritizing short-term gain over long-term benefit. Nonetheless, we are hopeful that our community will embrace ICON science

    Stochastic Inversion of P-to-S Converted Waves for Mantle Composition and Thermal Structure: Methodology and Application

    Get PDF
    We present a new methodology for inverting P‐to‐S receiver function (RF) waveforms directly for mantle temperature and composition. This is achieved by interfacing the geophysical inversion with self‐consistent mineral phase equilibria calculations from which rock mineralogy and its elastic properties are predicted as a function of pressure, temperature, and bulk composition. This approach anchors temperatures, composition, seismic properties, and discontinuities that are in mineral physics data, while permitting the simultaneous use of geophysical inverse methods to optimize models of seismic properties to match RF waveforms. Resultant estimates of transition zone (TZ) topography and volumetric seismic velocities are independent of tomographic models usually required for correcting for upper mantle structure. We considered two end‐member compositional models: the equilibrated equilibrium assemblage (EA) and the disequilibrated mechanical mixture (MM) models. Thermal variations were found to influence arrival times of computed RF waveforms, whereas compositional variations affected amplitudes of waves converted at the TZ discontinuities. The robustness of the inversion strategy was tested by performing a set of synthetic inversions in which crustal structure was assumed both fixed and variable. These tests indicate that unaccounted‐for crustal structure strongly affects the retrieval of mantle properties, calling for a two‐step strategy presented herein to simultaneously recover both crustal and mantle parameters. As a proof of concept, the methodology is applied to data from two stations located in the Siberian and East European continental platforms.This work was supported by a grant from the Swiss National Science Foundation (SNF project 200021_159907). B. T. was funded by a DĂ©lĂ©gation CNRS and CongĂ© pour Recherches et Conversion ThĂ©matique from the UniversitĂ© de Lyon to visit the Research School of Earth Sciences (RSES), The Australian National University (ANU). B. T. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement 79382

    tracking of adipose tissue grafts with cadmium-telluride quantum dots

    Get PDF
    Background Fat grafting, or lipofilling, represent frequent clinically used entities. The fate of these transplants is still not predictable, whereas only few animal models are available for further research. Quantum dots (QDs) are semiconductor nanocrystals which can be conveniently tracked in vivo due to photoluminescence. Methods Fat grafts in cluster form were labeled with cadmium-telluride (CdTe)-QD 770 and transplanted subcutaneously in a murine in vivo model. Photoluminescence levels were serially followed in vivo. Results Tracing of fat grafts was possible for 50 days with CdTe-QD 770. The remaining photoluminescence was 4.9%±2.5% for the QDs marked fat grafts after 30 days and 4.2%± 1.7% after 50 days. There was no significant correlation in the relative course of the tracking signal, when vital fat transplants were compared to non-vital graft controls. Conclusions For the first-time fat grafts were tracked in vivo with CdTe-QDs. CdTe-QDs could offer a new option for in vivo tracking of fat grafts for at least 50 days, but do not document vitality of the grafts

    Construction of Shear Wave Models by Applying Multi-Objective Optimization to Multiple Geophysical Data Sets

    No full text
    For this work, our main purpose is to obtain a better understanding of the Earth\u27s tectonic processes in the Texas region, which requires us to analyze the Earth structure. We expand on a constrained optimization approach for a joint inversion least-squares (LSQ) algorithm to characterize a one-dimensional Earth\u27s structure of Texas with the use of multiple geophysical data sets. We employed a joint inversion scheme using multiple geophysical datasets for the sole purpose of obtaining a three-dimensional velocity structure of Texas in order to identify an ancient rift system within Texas. In particular, we use data from the USArray, which is part of the EarthScope experiment, a 15-year program to place a dense network of permanent and portable seismographs across the continental United States. Utilizing the USArray data has provided us with the ability to image the crust and upper mantle structure of Texas. We simultaneously inverted multiple datasets from USArray data, to help us to better obtain an estimate of the true Earth structure model. We prove through numerical and experimental testing that our Multi-Objective Optimization (MOP) scheme performs inversion in a more robust, and flexible matter than traditional inversion approaches

    Geomagnetism, Paleomagnetism and Electromagnetism Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science

    No full text
    This article is composed of three independent commentaries about the state of Integrated, Coordinated, Open, Networked (ICON) principles (Goldman et al., 2021, https://doi.org/10.1002/essoar.10508554.1) in the Geomagnetism, Paleomagnetism, and Electromagnetism (GPE) section and discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: Global collaboration, reproducibility, data sharing and infrastructure; Inclusive equitable, and accessible science: Involvement, challenges, and support of early career, BIPOC, women, LGBTQIA+, and/or disabled researchers; Community engagement, citizen science, education, and stakeholder involvement. Data sharing practices and open repository use still varies strongly between GPE communities. Some have a long tradition of data sharing; others are only starting it. Globally, GPE leadership is strongly dominated by white males and diversity may increase through the creation of Science Equality Commissions. Improved global stakeholder involvement can increase research impacts and help fight inequalities. In all investigated topics we see promising beginnings but also recognize obstacles that include a lack of funding, a lack of understanding of diversity, and prioritizing short-term gain over long-term benefit. Nonetheless, we are hopeful that our community will embrace ICON science

    Geomagnetism, Paleomagnetism and Electromagnetism Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science

    Get PDF
    This article is composed of three independent commentaries about the state of Integrated, Coordinated, Open, Networked (ICON) principles (Goldman et al., 2021, https://doi.org/10.1002/essoar.10508554.1) in the Geomagnetism, Paleomagnetism, and Electromagnetism (GPE) section and discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: Global collaboration, reproducibility, data sharing and infrastructure; Inclusive equitable, and accessible science: Involvement, challenges, and support of early career, BIPOC, women, LGBTQIA+, and/or disabled researchers; Community engagement, citizen science, education, and stakeholder involvement. Data sharing practices and open repository use still varies strongly between GPE communities. Some have a long tradition of data sharing; others are only starting it. Globally, GPE leadership is strongly dominated by white males and diversity may increase through the creation of Science Equality Commissions. Improved global stakeholder involvement can increase research impacts and help fight inequalities. In all investigated topics we see promising beginnings but also recognize obstacles that include a lack of funding, a lack of understanding of diversity, and prioritizing short-term gain over long-term benefit. Nonetheless, we are hopeful that our community will embrace ICON science
    corecore