4,877 research outputs found

    New Measurement of the Relative Scintillation Efficiency of Xenon Nuclear Recoils Below 10 keV

    Full text link
    Liquid xenon is an important detection medium in direct dark matter experiments, which search for low-energy nuclear recoils produced by the elastic scattering of WIMPs with quarks. The two existing measurements of the relative scintillation efficiency of nuclear recoils below 20 keV lead to inconsistent extrapolations at lower energies. This results in a different energy scale and thus sensitivity reach of liquid xenon dark matter detectors. We report a new measurement of the relative scintillation efficiency below 10 keV performed with a liquid xenon scintillation detector, optimized for maximum light collection. Greater than 95% of the interior surface of this detector was instrumented with photomultiplier tubes, giving a scintillation yield of 19.6 photoelectrons/keV electron equivalent for 122 keV gamma rays. We find that the relative scintillation efficiency for nuclear recoils of 5 keV is 0.14, staying constant around this value up to 10 keV. For higher energy recoils we measure a value around 20%, consistent with previously reported data. In light of this new measurement, the XENON10 experiment's results on spin-independent WIMP-nucleon cross section, which were calculated assuming a constant 0.19 relative scintillation efficiency, change from 8.8×10448.8\times10^{-44} cm2^2 to 9.9×10449.9\times10^{-44} cm2^2 for WIMPs of mass 100 GeV/c2^2, and from 4.4×10444.4\times10^{-44} cm2^2 to 5.6×10445.6\times10^{-44} cm2^2 for WIMPs of mass 30 GeV/c2^2.Comment: 8 pages, 8 figure

    Effect of a fixed combination of nimodipine and betahistine versus betahistine as monotherapy in the long-term treatment of M\ue9ni\ue8re's disease: a 10-year experience

    Get PDF
    Despite an abundance of long-term pharmacological treatments for recurrent vertigo attacks due to M\ue9ni\ue8re's disease, there is no general agreement on the their efficacy. We present the results of a retrospective study based on a 10-year experience with two long-term medical protocols prescribed to patients affected by M\ue9ni\ue8re's disease (diagnosed according to the American Academy of Otolaryngology-Head and Neck Surgery Committee on Hearing and Equilibrium guidelines) who completed treatments in the period 1999-2009. A total of 113 medical records were analysed; 53 patients received betahistine-dihydrochloride at on-label dosage (32 mg die) for six months, and 60 patients were treated with the same regimen and nimodipine (40 mg die) as an add-therapy during the same period. Nimodipine, a 1,4-dihydropyridine that selectively blocks L-type voltage-sensitive calcium channels, has previously been tested as a monotherapy for recurrent vertigo of labyrinthine origin in a multinational, double-blind study with positive results. A moderate reduction of the impact of vertigo on quality of life (as assessed by the Dizziness Handicap Inventory) was obtained in patients after therapy with betahistine (p 0.05), whereas the fixed combination of betahistine and nimodipine was associated with a significant reduction of tinnitus annoyance and improvement of hearing loss (p < 0.005). It was concluded that nimodipine represents not only a valid add-therapy for M\ue9ni\ue8re's disease, and that it may also exert a specific effect on inner ear disorders. Further studies to investigate this possibility are needed

    pH-dependent redox and CO binding properties of chelated protoheme-L-histidine and protoheme-glycyl-L-histidine complexes

    Get PDF
    The pH dependence of redox properties, spectroscopic features and CO binding kinetics for the chelated protohemin-6(7)-L-histidine methyl ester (heme-H) and the chelated protohemin-6(7)-glycyl-L-histidine methyl ester (heme-GH) systems has been investigated between pH 2.0 and 12.0. The two heme systems appear to be modulated by four protonating groups, tentatively identified as coordinated H2O, one of heme's propionates, N epsilon of the coordinating imidazole, and the carboxylate of the histidine residue upon hydrolysis of the methyl ester group (in acid medium). The pK(a) values are different for the two hemes, thus reflecting structural differences. In particular, the different strain at the Fe-N-epsilon bond, related to the different length of the coordinating arm, results in a dramatic alteration of the bond strength, which is much smaller in heme-H than in heme-GH. It leads to a variation in the variation of the pKa for the protonation of the N-epsilon of the axial imidazole as well as in the proton-linked behavior of the other protonating groups, envisaging a cross-talk communication mechanism among different groups of the heme, which can be operative and relevant also in the presence of the protein matrix

    3D Position Sensitive XeTPC for Dark Matter Search

    Get PDF
    The technique to realize 3D position sensitivity in a two-phase xenon time projection chamber (XeTPC) for dark matter search is described. Results from a prototype detector (XENON3) are presented.Comment: Presented at the 7th UCLA Symposium on "Sources and Detection of Dark Matter and Dark Energy in the Universe

    A search for light dark matter in XENON10 data

    Full text link
    We report results of a search for light (<10 GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections \sigma_n>3.5x10^{-42} cm^2, for a dark matter particle mass m_{\chi}=8 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.Comment: Manuscript identical to v2 (published version) but also contains erratum. Note v3==v2 but without \linenumber

    Constraints on inelastic dark matter from XENON10

    Full text link
    It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results from CDMS-II and XENON10. Among the predictions of inelastically interacting dark matter are a suppression of low-energy events, and a population of nuclear recoil events at higher nuclear recoil equivalent energies. This is in stark contrast to the well-known expectation of a falling exponential spectrum for the case of elastic interactions. We present a new analysis of XENON10 dark matter search data extending to Enr=75_{nr}=75 keV nuclear recoil equivalent energy. Our results exclude a significant region of previously allowed parameter space in the model of inelastically interacting dark matter. In particular, it is found that dark matter particle masses mχ150m_{\chi}\gtrsim150 GeV are disfavored.Comment: 8 pages, 4 figure

    On-ground performance tests of the SAX/PDS detector

    Get PDF
    The Phoswich Detection System (PDS) is one of the four narrow field experiments on board the SAX satellite. The PDS will be dedicated to deep temporal and spectral studies of celestial X-ray sources in the 15–300 keV energy band. It also includes a gamma-ray burst monitor. The PDS detector is composed of 4 actively shielded NaI(Tl)/CsI(Na) phoswich scintillators with a total geometric area of 795 cm2 and a field of view of 1:4 (FWHM). The performance of the detector, before its integration with its flight electronic, was tested using standard instrumentation. Here we present results of these tests. The measured energy resolution of the phoswich units is better than 15% at 60 keV, confirming the expectations. Also test results of the anticoincidence shield of CsI(Na) and collimator are discussed

    Search for Early Gamma-ray Production in Supernovae Located in a Dense Circumstellar Medium with the Fermi LAT

    Get PDF
    Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV gamma rays and TeV neutrinos on a time scale of several months. We perform the first systematic search for gamma-ray emission in Fermi LAT data in the energy range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding in dense CSM. We search for a gamma-ray excess at each SNe location in a one year time window. In order to enhance a possible weak signal, we simultaneously study the closest and optically brightest sources of our sample in a joint-likelihood analysis in three different time windows (1 year, 6 months and 3 months). For the most promising source of the sample, SN 2010jl (PTF10aaxf), we repeat the analysis with an extended time window lasting 4.5 years. We do not find a significant excess in gamma rays for any individual source nor for the combined sources and provide model-independent flux upper limits for both cases. In addition, we derive limits on the gamma-ray luminosity and the ratio of gamma-ray-to-optical luminosity ratio as a function of the index of the proton injection spectrum assuming a generic gamma-ray production model. Furthermore, we present detailed flux predictions based on multi-wavelength observations and the corresponding flux upper limit at 95% confidence level (CL) for the source SN 2010jl (PTF10aaxf).Comment: Accepted for publication in ApJ. Corresponding author: A. Franckowiak ([email protected]), updated author list and acknowledgement

    Multiwavelength Evidence for Quasi-periodic Modulation in the Gamma-ray Blazar PG 1553+113

    Get PDF
    We report for the first time a gamma-ray and multi-wavelength nearly-periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope (LAT) we have discovered an apparent quasi-periodicity in the gamma-ray flux (E >100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 +/-0.08 year-period gamma-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the OVRO, Tuorla, KAIT, and CSS monitoring programs and Swift UVOT. The optical cycle appearing in ~10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multi-wavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.Comment: 8 pages, 5 figures. Accepted to The Astrophysical Journal Letters. Corresponding authors: S. Ciprini (ASDC/INFN), S. Cutini (ASDC/INFN), S. Larsson (Stockholm Univ/KTH), A. Stamerra (INAF/SNS), D. J. Thompson (NASA GSFC

    The scintillation and ionization yield of liquid xenon for nuclear recoils

    Get PDF
    XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S1) and ionization signal (S2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield \leff and the absolute ionization yield Q_y, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of \leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our \leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is 4 keV. A knowledge of the ionization yield \Qy is necessary to establish the trigger threshold of the experiment. The ionization yield \Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.Comment: 8 pages, 9 figures. To be published in Nucl. Instrum. Methods
    corecore