245 research outputs found

    Investigation of the structural requirements for N-methyl-D-aspartate receptor positive and negative allosteric modulators based on 2-naphthoic acid.

    Get PDF
    The N-methyl-D-aspartate receptor (NMDAR), a ligand-gated ion channel activated by L-glutamate and glycine, plays a major role in the synaptic plasticity underlying learning and memory. NMDARs are involved in neurodegenerative disorders such as Alzheimer's and Parkinson's disease and NMDAR hypofunction is implicated in schizophrenia. Herein we describe structure-activity relationship (SAR) studies on 2-naphthoic acid derivatives to investigate structural requirements for positive and negative allosteric modulation of NMDARs. These studies identified compounds such as UBP684 (14b), which act as pan potentiators by enhancing NMDAR currents in diheteromeric NMDAR tetramers containing GluN1 and GluN2A-D subunits. 14b and derivatives thereof are useful tools to study synaptic function and have potential as leads for the development of drugs to treat schizophrenia and disorders that lead to a loss of cognitive function. In addition, SAR studies have identified a series of styryl substituted compounds with partial NAM activity and a preference for inhibition of GluN2D versus the other GluN2 subunits. In particular, the 3-and 2-nitrostyryl derivatives UBP783 (79i) and UBP792 (79h) had IC50s of 1.4 μM and 2.9 μM, respectively, for inhibition of GluN2D but showed only 70-80% maximal inhibition. GluN2D has been shown to play a role in excessive pain transmission due to nerve injury and potentially in neurodegenerative disorders. Partial GluN2D inhibitors may be leads for the development of drugs to treat these disorders without the adverse effects observed with full NMDAR antagonists.National Institute of Mental Health of the National Institutes of Health under Award Number R01MH060252, the Medical Research Council, United Kingdom (Grants G0601509, G0601812) and the BBSRC (grant BB/L001977/1)

    Spatial and Temporal Variability of Macroinvertebrates in Spawning and Non-Spawning Habitats during a Salmon Run in Southeast Alaska

    Get PDF
    Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream

    Chronic NMDA administration to rats increases brain pro-apoptotic factors while decreasing anti-Apoptotic factors and causes cell death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic <it>N</it>-Methyl-d-aspartate (NMDA) administration to rats is reported to increase arachidonic acid signaling and upregulate neuroinflammatory markers in rat brain. These changes may damage brain cells. In this study, we determined if chronic NMDA administration (25 mg/kg i.p., 21 days) to rats would alter expression of pro- and anti-apoptotic factors in frontal cortex, compared with vehicle control.</p> <p>Results</p> <p>Using real time RT-PCR and Western blotting, chronic NMDA administration was shown to decrease mRNA and protein levels of anti-apoptotic markers Bcl-2 and BDNF, and of their transcription factor phospho-CREB in the cortex. Expression of pro-apoptotic Bax, Bad, and 14-3-3ζ was increased, as well as Fluoro-Jade B (FJB) staining, a marker of neuronal loss.</p> <p>Conclusion</p> <p>This alteration in the balance between pro- and anti-apoptotic factors by chronic NMDA receptor activation in this animal model may contribute to neuronal loss, and further suggests that the model can be used to examine multiple processes involved in excitotoxicity.</p

    Glutamate and Synaptic Plasticity Systems and Smoking Behavior: Results from a Genetic Association Study

    Get PDF
    Smoking behavior is a multifactorial phenotype with significant heritability. Identifying the specific loci that influence smoking behavior could provide important etiological insights and facilitate the development of treatments to further reduce smoking related mortality. Although several studies pointed to different candidate genes for smoking, there is still a need for replication especially in samples from different countries. In the present study, we investigated whether 21 positive signals for smoking behavior from these studies are replicated in a sample of 531 blood donors from the Brazilian population. The polymorphisms were chosen based on their representativeness of different candidate biologic systems, strength of previous evidence, location and allele frequencies. By genotyping with the Sequenom MassARRAY iPLEX platform and subsequent statistical analysis using Plink software, we show that two of the SNPs studied, in the SLC1A2 (rs1083658) and ACTN1 (rs2268983) genes, were associated with smoking behavior in our study population. These genes are involved in crucial aspects of nicotine dependence, glutamate system and synaptic plasticity, and as such, are biologically plausible candidates that merit further molecular analyses so as to clarify their potential role in smoking behavior

    Whole Genome Sequencing Reveals Local Transmission Patterns of Mycobacterium bovis in Sympatric Cattle and Badger Populations

    Get PDF
    Whole genome sequencing (WGS) technology holds great promise as a tool for the forensic epidemiology of bacterial pathogens. It is likely to be particularly useful for studying the transmission dynamics of an observed epidemic involving a largely unsampled &lsquo;reservoir' host, as for bovine tuberculosis (bTB) in British and Irish cattle and badgers. BTB is caused by Mycobacterium bovis, a member of the M. tuberculosis complex that also includes the aetiological agent for human TB. In this study, we identified a spatio-temporally linked group of 26 cattle and 4 badgers infected with the same Variable Number Tandem Repeat (VNTR) type of M. bovis. Single-nucleotide polymorphisms (SNPs) between sequences identified differences that were consistent with bacterial lineages being persistent on or near farms for several years, despite multiple clear whole herd tests in the interim. Comparing WGS data to mathematical models showed good correlations between genetic divergence and spatial distance, but poor correspondence to the network of cattle movements or within-herd contacts. Badger isolates showed between zero and four SNP differences from the nearest cattle isolate, providing evidence for recent transmissions between the two hosts. This is the first direct genetic evidence of M. bovis persistence on farms over multiple outbreaks with a continued, ongoing interaction with local badgers. However, despite unprecedented resolution, directionality of transmission cannot be inferred at this stage. Despite the often notoriously long timescales between time of infection and time of sampling for TB, our results suggest that WGS data alone can provide insights into TB epidemiology even where detailed contact data are not available, and that more extensive sampling and analysis will allow for quantification of the extent and direction of transmission between cattle and badgers

    Oxidative Stress Mediates Physiological Costs of Begging in Magpie (Pica pica) Nestlings

    Get PDF
    [Background] Theoretical models predict that a cost is necessary to guarantee honesty in begging displays given by offspring to solicit food from their parents. There is evidence for begging costs in the form of a reduced growth rate and immunocompetence. Moreover, begging implies vigorous physical activity and attentiveness, which should increase metabolism and thus the releasing of pro-oxidant substances. Consequently, we predict that soliciting offspring incur a cost in terms of oxidative stress, and growth rate and immune response (processes that generate pro-oxidants substances) are reduced in order to maintain oxidative balance. [Methodology/Principal Findings] We test whether magpie (Pica pica) nestlings incur a cost in terms of oxidative stress when experimentally forced to beg intensively, and whether oxidative balance is maintained by reducing growth rate and immune response. Our results show that begging provokes oxidative stress, and that nestlings begging for longer bouts reduce growth and immune response, thereby maintaining their oxidative status. [Conclusions/Significance] These findings help explaining the physiological link between begging and its associated growth and immunocompetence costs, which seems to be mediated by oxidative stress. Our study is a unique example of the complex relationships between the intensity of a communicative display (begging), oxidative stress, and life-history traits directly linked to viability.GM-R was supported by the Spanish Government (Ministerio de Ciencia y Tecnología, “Juan de la Cierva” program), and TR was supported by the Consejo Superior de Investigaciones Científicas (CSIC; Proyectos Intramurales Especiales)

    The case for using personally relevant and emotionally stimulating gambling messages as a gambling harm-minimisation strategy

    Get PDF
    Emotions typically exert powerful, enduring, and often predictable influences over decision-making. However, emotion-based decision-making is seen as a mediator of impulsive and reckless gambling behaviour, where emotion may be seen as the antithesis of controlled and rational decision-making, a proposition supported by recent neuroimaging evidence. The present paper argues that the same emotional mechanisms can be used to influence a gambler to cease gambling, by focusing their emotional decision-making on positive external and personally relevant factors, such as familial impact or longer term financial factors. Emotionally stimulating messages may also have the advantage of capturing attention above and beyond traditionally responsible gambling messaging. This is important given the highly emotionally aroused states often experienced by both gamblers and problem gamblers, where attentional activation thresholds for external stimuli such as messages may be increased
    corecore