64 research outputs found

    Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise

    Get PDF
    We developed a theory of human stance control that predicted (1) how subjects re-weight their utilization of proprioceptive and graviceptive orientation information in experiments where eyes closed stance was perturbed by surface-tilt stimuli with different amplitudes, (2) the experimentally observed increase in body sway variability (i.e. the “remnant” body sway that could not be attributed to the stimulus) with increasing surface-tilt amplitude, (3) neural controller feedback gains that determine the amount of corrective torque generated in relation to sensory cues signaling body orientation, and (4) the magnitude and structure of spontaneous body sway. Responses to surface-tilt perturbations with different amplitudes were interpreted using a feedback control model to determine control parameters and changes in these parameters with stimulus amplitude. Different combinations of internal sensory and/or motor noise sources were added to the model to identify the properties of noise sources that were able to account for the experimental remnant sway characteristics. Various behavioral criteria were investigated to determine if optimization of these criteria could predict the identified model parameters and amplitude-dependent parameter changes. Robust findings were that remnant sway characteristics were best predicted by models that included both sensory and motor noise, the graviceptive noise magnitude was about ten times larger than the proprioceptive noise, and noise sources with signal-dependent properties provided better explanations of remnant sway. Overall results indicate that humans dynamically weight sensory system contributions to stance control and tune their corrective responses to minimize the energetic effects of sensory noise and external stimuli

    Increasing Catalyst Efficiency in C−H Activation Catalysis

    Get PDF
    C−H activation reactions with high catalyst turnover numbers are still very rare in the literature and 10 mol % is a common catalyst loading in this field. We offer a representative overview of efficient C−H activation catalysis to highlight this neglected aspect of catalysis development and inspire future effort towards more efficient C−H activation. Examples ranging from palladium catalysis, Cp*Rh III - and Cp*Co III -catalysis, the C−H borylation and silylation to methane C−H activation are presented. In these reactions, up to tens of thousands of catalyst turnovers have been observed

    Inferring Visuomotor Priors for Sensorimotor Learning

    Get PDF
    Sensorimotor learning has been shown to depend on both prior expectations and sensory evidence in a way that is consistent with Bayesian integration. Thus, prior beliefs play a key role during the learning process, especially when only ambiguous sensory information is available. Here we develop a novel technique to estimate the covariance structure of the prior over visuomotor transformations – the mapping between actual and visual location of the hand – during a learning task. Subjects performed reaching movements under multiple visuomotor transformations in which they received visual feedback of their hand position only at the end of the movement. After experiencing a particular transformation for one reach, subjects have insufficient information to determine the exact transformation, and so their second reach reflects a combination of their prior over visuomotor transformations and the sensory evidence from the first reach. We developed a Bayesian observer model in order to infer the covariance structure of the subjects' prior, which was found to give high probability to parameter settings consistent with visuomotor rotations. Therefore, although the set of visuomotor transformations experienced had little structure, the subjects had a strong tendency to interpret ambiguous sensory evidence as arising from rotation-like transformations. We then exposed the same subjects to a highly-structured set of visuomotor transformations, designed to be very different from the set of visuomotor rotations. During this exposure the prior was found to have changed significantly to have a covariance structure that no longer favored rotation-like transformations. In summary, we have developed a technique which can estimate the full covariance structure of a prior in a sensorimotor task and have shown that the prior over visuomotor transformations favor a rotation-like structure. Moreover, through experience of a novel task structure, participants can appropriately alter the covariance structure of their prior

    A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC

    Get PDF

    Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database

    Get PDF
    Background: Diabetes mellitus is a common co-existing disease in the critically ill. Diabetes mellitus may reduce the risk of acute respiratory distress syndrome (ARDS), but data from previous studies are conflicting. The objective of this study was to evaluate associations between pre-existing diabetes mellitus and ARDS in critically ill patients with acute hypoxemic respiratory failure (AHRF). Methods: An ancillary analysis of a global, multi-centre prospective observational study (LUNG SAFE) was undertaken. LUNG SAFE evaluated all patients admitted to an intensive care unit (ICU) over a 4-week period, that required mechanical ventilation and met AHRF criteria. Patients who had their AHRF fully explained by cardiac failure were excluded. Important clinical characteristics were included in a stepwise selection approach (forward and backward selection combined with a significance level of 0.05) to identify a set of independent variables associated with having ARDS at any time, developing ARDS (defined as ARDS occurring after day 2 from meeting AHRF criteria) and with hospital mortality. Furthermore, propensity score analysis was undertaken to account for the differences in baseline characteristics between patients with and without diabetes mellitus, and the association between diabetes mellitus and outcomes of interest was assessed on matched samples. Results: Of the 4107 patients with AHRF included in this study, 3022 (73.6%) patients fulfilled ARDS criteria at admission or developed ARDS during their ICU stay. Diabetes mellitus was a pre-existing co-morbidity in 913 patients (22.2% of patients with AHRF). In multivariable analysis, there was no association between diabetes mellitus and having ARDS (OR 0.93 (0.78-1.11); p = 0.39), developing ARDS late (OR 0.79 (0.54-1.15); p = 0.22), or hospital mortality in patients with ARDS (1.15 (0.93-1.42); p = 0.19). In a matched sample of patients, there was no association between diabetes mellitus and outcomes of interest. Conclusions: In a large, global observational study of patients with AHRF, no association was found between diabetes mellitus and having ARDS, developing ARDS, or outcomes from ARDS. Trial registration: NCT02010073. Registered on 12 December 2013

    Combination of olfactory test and substantia nigra transcranial sonopraphy in the differential diagnosis of Parkinson’s disease: a pilot study from China

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>Both hyposmia and substania nigra (SN) hyperechogenicity on trascranial sonography (TCS) were risk markers for idiopathic Parkinson’s disease (PD), which was beneficial to the differential diagnosis of the disease. However, each of their single diagnostic value is often limited. The purpose of present study was to explore whether the combination of olfactory test and TCS of SN could enhance the differential diagnostic power in Chinese patients with PD.</p> <p>Methods</p> <p>Thirty-seven patients with PD and twenty-six patients with essential tremor (ET) were evaluated on 16-item odor identification test from extended version of sniffin’ sticks and TCS of SN. The frequency of hyposmia and SN hyperechogenicity in each group was compared. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the two clinical biomarkers were analyzed.</p> <p>Results</p> <p>The frequency of hyposmia in patients with PD was significantly higher than in patients with ET (62.2% <it>VS.</it> 3.8%, <it>P</it> = 0.000). The frequency of SN hyperechogenicity in patients with PD was significantly higher than in ET subjects (48.6% <it>VS.</it> 15.4%, <it>P</it> = 0.006). The combination of hyposmia and SN hyperechogenicity (if either one or both present) discriminated patients with PD from ET with a sensitivity of 78.4% and 29.7%, specificity of 80.8% and 100%, PPV of 85.3% and 100%, and NPV of 72.4% and 50.0%, respectively.</p> <p>Conclusions</p> <p>Our preliminary data suggested that the combination of hyposmia and SN hyperechogenicity could improve the diagnostic potential for discriminating Chinese patients with PD from ET.</p
    corecore