1,363 research outputs found

    Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides

    Get PDF
    Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations

    Activation of Type 1 Cannabinoid Receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures

    Get PDF
    The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive), neurons and astrocytes. Stimulation of the CB1R by (R)-(+)-Methanandamide (R-m-AEA) increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation), at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca2+](i)) in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.Fundacao para a Ciencia e a Tecnologia - Portugal [POCTI/SAU-NEU/68465/2006, PTDC/SAU-NEU/104415/2008, PTDC/SAU-NEU/101783/2008, POCTI/SAU-NEU/110838/2009]; Fundacao Calouste Gulbenkian [96542]; Fundacao para a Ciencia e Tecnologiainfo:eu-repo/semantics/publishedVersio

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    In Vitro and In Vivo Investigation of the Efficacy of Arylimidamide DB1831 and Its Mesylated Salt Form - DB1965 - against Trypanosoma cruzi Infection

    Get PDF
    Chagas disease is caused by infection with the intracellular protozoan parasite Trypanosoma cruzi. At present, nifurtimox and benznidazole, both compounds developed empirically over four decades ago, represent the chemotherapeutic arsenal for treating this highly neglected disease. However, both drugs present variable efficacy depending on the geographical area and the occurrence of natural resistance, and are poorly effective against the later chronic stage. As a part of a search for new therapeutic opportunities to treat chagasic patients, pre-clinical studies were performed to characterize the activity of a novel arylimidamide (AIA - DB1831 (hydrochloride salt) and DB1965 (mesylate salt)) against T.cruzi. These AIAs displayed a high trypanocidal effect in vitro against both relevant forms in mammalian hosts, exhibiting a high selectivity index and a very high efficacy (IC50 value/48 h of 5–40 nM) against intracellular parasites. DB1965 shows high activity in vivo in acute experimental models (mouse) of T.cruzi, showing a similar effect to benznidazole (Bz) when compared under a scheme of 10 daily consecutive doses with 12.5 mg/kg. Although no parasitological cure was observed after treating with 20 daily consecutive doses, a combined dosage of DB1965 (5 mg/kg) with Bz (50 mg/kg) resulted in parasitaemia clearance and 100% animal survival. In summary, our present data confirmed that aryimidamides represent promising new chemical entities against T.cruzi in therapeutic schemes using the AIA alone or in combination with other drugs, like benznidazole

    Exercise-induced intra-ventricular gradients as a frequent potential cause of myocardial ischemia in cardiac syndrome X patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of intra-ventricular gradients (IVG) during dobutamine or exercise stress is not infrequent, and can be associated to symptoms during stress.</p> <p>The purpose of this study was to assess the occurrence of IVG during exercise stress echocardiography in cardiac syndrome X patients.</p> <p>Methods</p> <p>We prospectively evaluated 91 patients (pts) mean aged 51 ± 12 years (age ranged 20 to 75 years old), 44 of whom were women. All pts had angina, positive exercise ECG treadmill testing, normal rest echocardiogram and no coronary artery disease on coronary angiogram (cardiac X syndrome). After complete Doppler echocardiographic evaluation with determination of left ventricular outflow tract index (LVOTi), relative left ventricular wall thickness (RLVWT) and left ventricular end-diastolic volume index (LVDVi), all patients underwent stress echocardiography with two-dimensional and Doppler echographic evaluation during and after treadmill exercise.</p> <p>Results</p> <p>For analysis purpose patients were divided in 2 groups, according to the development of IVG. Doppler evidence of IVG was found in 33 (36%) of the patients (Group A), with mean age 47 ± 14 years old (age ranged 20 to 72 years) and with a mean end-systolic peak gradient of 86 ± 34 mmHg (ranging from 30 to 165 mmHg). The IVG development was accompanied by SAM of the mitral valve in 23 pts. Three of these pts experienced symptomatic hypotension. Ten were women (30% pts). 58 pts in group B, 34 of whom were women (59%) (p = 0,01 vs group A), mean aged 53,5 ± 10,9 years old (age ranged 34 to 75 years) (p = 0,03 vs group A), did not develop IVG. LVOTi was 10,29 ± 0,9 mm/m<sup>2 </sup>in group A and 11,4 ± 1 mm/m<sup>2 </sup>in group B (p < 0,000); RLVWT was 0,36 ± 0,068 in group A and 0,33 ± 0,046 in group B (p < 0,01); LVDVi was 44,8 ± 10 ml/m<sup>2 </sup>in group A and 56 ± 11,6 ml/m<sup>2 </sup>in group B (p = 0,000).</p> <p>Conclusion</p> <p>1. A significant number of patients with cardiac X syndrome developed IVG during upright exercise in treadmill. These pts (group A) are mainly males and younger than those who did not develop IVG.</p> <p>2. The development of IVG and mitral valve SAM on exertion seems to be associated with ST segment downsloping during stress testing in patients without epicardial coronary disease.</p> <p>3. The development of IVG and mitral valve SAM seems to be associated with lower LVOTi, lower LVDVi and higher RLVWT.</p

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets
    • …
    corecore