1,608 research outputs found

    BRD4 facilitates replication stress-induced DNA damage response.

    Get PDF
    Previous reports have demonstrated that select cancers depend on BRD4 to regulate oncogenic gene transcriptional programs. Here we describe a novel role for BRD4 in DNA damage response (DDR). BRD4 associates with and regulates the function of pre-replication factor CDC6 and plays an indispensable part in DNA replication checkpoint signaling. Inhibition of BRD4 by JQ1 or AZD5153 resulted in a rapid, time-dependent reduction in CHK1 phosphorylation and aberrant DNA replication re-initiation. Furthermore, BRD4 inhibition sensitized cancer cells to various replication stress-inducing agents, and synergized with ATR inhibitor AZD6738 to induce cell killing across a number of cancer cell lines. The synergistic interaction between AZD5153 and AZD6738 is translatable to in vivo ovarian cell-line and patient-derived xenograft models. Taken together, our study uncovers a new biological function of BRD4 and provides mechanistic rationale for combining BET inhibitors with DDR-targeted agents for cancer therapy

    Microplastic pollution in deep-sea sediments from the Great Australian Bight

    Get PDF
    Interest in understanding the extent of plastic and specifically microplastic pollution has increased on a global scale. However, we still know relatively little about how much plastic pollution has found its way into the deeper areas of the world’s oceans. The extent of microplastic pollution in deep-sea sediments remains poorly quantified, but this knowledge is imperative for predicting the distribution and potential impacts of global plastic pollution. To address this knowledge gap, we quantified microplastics in deep-sea sediments from the Great Australian Bight using an adapted density separation and dye fluorescence technique. We analyzed sediment cores from six locations (1–6 cores each, n = 16 total samples) ranging in depth from 1,655 to 3,062 m and offshore distances ranging from 288 to 356 km from the Australian coastline. Microplastic counts ranged from 0 to 13.6 fragments per g dry sediment (mean 1.26 ± 0.68; n = 51). We found substantially higher microplastic counts than recorded in other analyses of deep-sea sediments. Overall, the number of microplastic fragments in the sediment increased as surface plastic counts increased, and as the seafloor slope angle increased. However, microplastic counts were highly variable, with heterogeneity between sediment cores from the same location greater than the variation across sampling sites. Based on our empirical data, we conservatively estimate 14 million tonnes of microplastic reside on the ocean floor

    Attainment rate as a surrogate indicator of the intervertebral neutral zone length in lateral bending: An in vitro proof of concept study

    Get PDF
    Background Lumbar segmental instability is often considered to be a cause of chronic low back pain. However, defining its measurement has been largely limited to laboratory studies. These have characterised segmental stability as the intrinsic resistance of spine specimens to initial bending moments by quantifying the dynamic neutral zone. However these measurements have been impossible to obtain in vivo without invasive procedures, preventing the assessment of intervertebral stability in patients. Quantitative fluoroscopy (QF), measures the initial velocity of the attainment of intervertebral rotational motion in patients, which may to some extent be representative of the dynamic neutral zone. This study sought to explore the possible relationship between the dynamic neutral zone and intervertebral rotational attainment rate as measured with (QF) in an in vitro preparation. The purpose was to find out if further work into this concept is worth pursuing. Method This study used passive recumbent QF in a multi-segmental porcine model. This assessed the intrinsic intervertebral responses to a minimal coronal plane bending moment as measured with a digital force guage. Bending moments about each intervertebral joint were calculated and correlated with the rate at which global motion was attained at each intervertebral segment in the first 10° of global motion where the intervertebral joint was rotating. Results Unlike previous studies of single segment specimens, a neutral zone was found to exist during lateral bending. The initial attainment rates for left and right lateral flexion were comparable to previously published in vivo values for healthy controls. Substantial and highly significant levels of correlation between initial attainment rate and neutral zone were found for left (Rho = 0.75, P = 0.0002) and combined left-right bending (Rho = 0.72, P = 0.0001) and moderate ones for right alone (Rho = 0.55, P = 0.0012). Conclusions This study found good correlation between the initial intervertebral attainment rate and the dynamic neutral zone, thereby opening the possibility to detect segmental instability from clinical studies. However the results must be treated with caution. Further studies with multiple specimens and adding sagittal plane motion are warranted

    Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. Methodology/Principal Findings: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1ι and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. Conclusions/Significance: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice. Š 2014 Sandi et al

    MRI classification of interspinous ligament degeneration of the lumbar spine: intraobserver and interobserver reliability and the frequency of disagreement

    Get PDF
    Posterior spinal ligament pathology is becoming increasingly recognized as a significant cause of low back pain. Despite the growing clinical importance of interspinous ligament degeneration in low back pain patients, formal reliability studies for the magnetic resonance imaging (MRI) evaluation of interspinous ligaments have not been performed. We proposed an MRI classification system for interspinous ligament degeneration and conducted a comprehensive reliability and reproducibility assessment. Fifty patients who had low back pain with or without leg discomfort (26 males and 24 females) with a mean age of 48.8 years (range 23–85 years) were studied. The classification for lumbar interspinous ligament degeneration was developed on the basis of the literature using mid-sagittal T1- and T2-weighted images. Three spine surgeons independently graded a total of 200 interspinous ligament levels. Intraobserver and interobserver reliability were assessed by kappa statistics. The frequency of disagreement was also identified. The intraobserver agreement was excellent in all readers (kappa range 0.840–0.901). The interobserver agreement was lower as expected, and was substantial to excellent (kappa range 0.726–0.818). Overall complete agreement was obtained in 87.8% of all interspinous ligament levels. A difference of 1, 2, and 3 grades occurred in 8.1, 3.0, and 1.1% of readings, respectively. This proposed MRI classification of interspinous ligament degeneration was simple, reliable, and reproducible. Its use as a standardized nomenclature in clinical and radiographic research may be recommended

    Effects of PPARγ ligands on TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Get PDF
    BACKGROUND: Transforming growth factor beta1 (TGF-beta1)-mediated epithelial mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to lung fibrosis. Since PPAR gamma ligands have been shown to inhibit fibroblast activation by TGF-beta1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ) and ciglitazone (CGZ) to regulate TGF-beta1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker) and N-cadherin (mesenchymal cell marker), and collagen 1 alpha 1 (COL1A1), CTGF and MMP-2 mRNA. METHODS: Serum-deprived A549 cells (human AEC cell line) were pre-incubated with RGZ and CGZ (1 - 30 microM) in the absence or presence of the PPAR gamma antagonist GW9662 (10 microM) before TGFbeta-1 (0.075-7.5 ng/ml) treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR. RESULTS: TGFbeta-1 (2.5 ng/ml)-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGF beta 1-induced changes in cell morphology, and PPAR gamma-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF-beta1 (0.25 ng/ml). However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF-beta1 (2.5 ng/ml), with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF-beta1 was not inhibited by RGZ or CGZ. CONCLUSIONS: RGZ and CGZ inhibited profibrotic changes in TGF-beta1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPAR gamma-dependent. Further studies are required to unravel additional mechanisms of inhibition of TGF-beta1 signalling by thiazolidinediones and their implications for the contribution of EMT to lung fibrosis

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions

    The effectiveness of interventions to change six health behaviours: a review of reviews

    Get PDF
    Background: Several World Health Organisation reports over recent years have highlighted the high incidence of chronic diseases such as diabetes, coronary heart disease and cancer. Contributory factors include unhealthy diets, alcohol and tobacco use and sedentary lifestyles. This paper reports the findings of a review of reviews of behavioural change interventions to reduce unhealthy behaviours or promote healthy behaviours. We included six different health-related behaviours in the review: healthy eating, physical exercise, smoking, alcohol misuse, sexual risk taking (in young people) and illicit drug use. We excluded reviews which focussed on pharmacological treatments or those which required intensive treatments (e. g. for drug or alcohol dependency). Methods: The Cochrane Library, Database of Abstracts of Reviews of Effectiveness (DARE) and several Ovid databases were searched for systematic reviews of interventions for the six behaviours (updated search 2008). Two reviewers applied the inclusion criteria, extracted data and assessed the quality of the reviews. The results were discussed in a narrative synthesis. Results: We included 103 reviews published between 1995 and 2008. The focus of interventions varied, but those targeting specific individuals were generally designed to change an existing behaviour (e. g. cigarette smoking, alcohol misuse), whilst those aimed at the general population or groups such as school children were designed to promote positive behaviours (e. g. healthy eating). Almost 50% (n = 48) of the reviews focussed on smoking (either prevention or cessation). Interventions that were most effective across a range of health behaviours included physician advice or individual counselling, and workplace- and school-based activities. Mass media campaigns and legislative interventions also showed small to moderate effects in changing health behaviours. Generally, the evidence related to short-term effects rather than sustained/longer-term impact and there was a relative lack of evidence on how best to address inequalities. Conclusions: Despite limitations of the review of reviews approach, it is encouraging that there are interventions that are effective in achieving behavioural change. Further emphasis in both primary studies and secondary analysis (e.g. systematic reviews) should be placed on assessing the differential effectiveness of interventions across different population subgroups to ensure that health inequalities are addressed.</p
    • …
    corecore