5,866 research outputs found

    Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    Get PDF
    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Furthermore, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies

    A secure wireless telehealthcare monitoring system and its web application

    Get PDF
    No abstract

    PKA Mediates Constitutive Activation of CFTR in Human Sweat Duct

    Get PDF
    The cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channels are constitutively activated in sweat ducts. Since phosphorylation-dependent and -independent mechanisms can activate CFTR, we sought to determine the actual mechanism responsible for constitutive activation of these channels in vivo. We show that the constitutively activated CFTR Cl− conductance (gCFTR) in the apical membrane is completely deactivated following α-toxin permeabilization of the basolateral membrane. We investigated whether such inhibition of gCFTR following permeabilization is due to the loss of cytoplasmic glutamate or due to dephosphorylation of CFTR by an endogenous phosphatase in the absence of kinase activity (due to the loss of kinase agonist cAMP, cGMP or GTP through α-toxin pores). In order to distinguish between these two possibilities, we examined the effect of inhibiting the endogenous phosphatase activity with okadaic acid (10−8 M) on the permeabilization-induced deactivation of gCFTR. We show that okadaic acid (1) inhibits an endogenous phosphatase responsible for dephosphorylating cAMP but not cGMP or G protein-activated CFTR and (2) prevents deactivation of CFTR following permeabilization of the basolateral membrane. These results indicate that distinctly different phosphatases may be responsible for dephosphorylating different kinase-specific sites on CFTR. We conclude that the phosphorylation by PKA alone appears to be primarily responsible for constitutive activation of gCFTR in vivo

    Automorphisms of graphs of cyclic splittings of free groups

    Full text link
    We prove that any isometry of the graph of cyclic splittings of a finitely generated free group FNF_N of rank N3N\ge 3 is induced by an outer automorphism of FNF_N. The same statement also applies to the graphs of maximally-cyclic splittings, and of very small splittings.Comment: 22 pages, 5 figures. Small modifications. To appear in Geometriae Dedicat

    Human brain responses to concomitant stimulation of Aδ and C nociceptors

    Get PDF
    Intense radiant heat pulses concomitantly activate Aδ- and C-fiber skin nociceptors, and elicit a typical double sensation: an initial Aδ-related pricking pain is followed by a C-related prolonged burning sensation. It has been repeatedly reported that C-fiber laser-evoked potentials (C-LEPs) become detectable only when the concomitant activation of Aδ-fibers is avoided or reduced. Given that the saliency of the eliciting stimulus is a major determinant of LEPs, one explanation for these observations is that the saliency of the C-input is smaller than that of the preceding Aδ-input. However, even if the saliency of the C-input is reduced because of the preceding Aδ-input, a C-LEP should still be visible even when preceded by an Aδ-LEP response. Here we tested this hypothesis by applying advanced signal processing techniques (peak alignment and time-frequency decomposition) to electroencephalographic data collected in two experiments conducted in 34 and 96 healthy participants. We show that, when using optimal stimulus parameters (delivering >80 stimuli within a small skin territory), C-LEPs can be reliably detected in most participants. Importantly, C-LEPs are observed even when preceded by Aδ-LEPs, both in average waveforms and single trials. By providing quantitative information about several response properties of C-LEPs (latency jitter, stimulus-response and perception-response functions, dependency on stimulus repetitions and stimulated area), these results define optimal parameters to record C-LEPs simply and reliably. These findings have important clinical implications for assessing small-fiber function in neuropathies and neuropathic pain

    Intraoperative Liver Surface Completion with Graph Convolutional VAE

    Full text link
    In this work we propose a method based on geometric deep learning to predict the complete surface of the liver, given a partial point cloud of the organ obtained during the surgical laparoscopic procedure. We introduce a new data augmentation technique that randomly perturbs shapes in their frequency domain to compensate the limited size of our dataset. The core of our method is a variational autoencoder (VAE) that is trained to learn a latent space for complete shapes of the liver. At inference time, the generative part of the model is embedded in an optimisation procedure where the latent representation is iteratively updated to generate a model that matches the intraoperative partial point cloud. The effect of this optimisation is a progressive non-rigid deformation of the initially generated shape. Our method is qualitatively evaluated on real data and quantitatively evaluated on synthetic data. We compared with a state-of-the-art rigid registration algorithm, that our method outperformed in visible areas

    Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming

    Get PDF
    Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood, potential positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere in a warmer world. Using integrated metagenomic technologies, we showed that the microbial functional community structure in the active layer of tundra soil was significantly altered after only 1.5 years of warming, a rapid response demonstrating the high sensitivity of this ecosystem to warming. The abundances of microbial functional genes involved in both aerobic and anaerobic carbon decomposition were also markedly increased by this short-term warming. Consistent with this, ecosystem respiration (R eco) increased up to 38%. In addition, warming enhanced genes involved in nutrient cycling, which very likely contributed to an observed increase (30%) in gross primary productivity (GPP). However, the GPP increase did not offset the extra R eco, resulting in significantly more net carbon loss in warmed plots compared with control plots. Altogether, our results demonstrate the vulnerability of active-layer soil carbon in this permafrost-based tundra ecosystem to climate warming and the importance of microbial communities in mediating such vulnerability

    Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency

    Get PDF
    To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35°C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.
Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1µm.
The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.
Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0°C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats

    Microbial fuel cells: a green and alternative source for bioenergy production

    Get PDF
    Microbial fuel cell (MFC) represents one of the green technologies for the production of bioenergy. MFCs using microalgae produce bioenergy by converting solar energy into electrical energy as a function of metabolic and anabolic pathways of the cells. In the MFCs with bacteria, bioenergy is generated as a result of the organic substrate oxidation. MFCs have received high attention from researchers in the last years due to the simplicity of the process, the absence in toxic by-products, and low requirements for the algae growth. Many studies have been conducted on MFC and investigated the factors affecting the MFC performance. In the current chapter, the performance of MFC in producing bioenergy as well as the factors which influence the efficacy of MFCs is discussed. It appears that the main factors affecting MFC’s performance include bacterial and algae species, pH, temperature, salinity, substrate, mechanism of electron transfer in an anodic chamber, electrodes materials, surface area, and electron acceptor in a cathodic chamber. These factors are becoming more influential and might lead to overproduction of bioenergy when they are optimized using response surface methodology (RSM)

    The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver

    Get PDF
    LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in hepatocytes in vitro and hyperglycaemia in fasting mice in vivo. Here we report that the salt-inducible kinases (SIK1, 2 and 3), members of the AMPK-related kinase family, play a key role as gluconeogenic suppressors downstream of LKB1 in the liver. The selective SIK inhibitor HG-9-91-01 promotes dephosphorylation of transcriptional co-activators CRTC2/3 resulting in enhanced gluconeogenic gene expression and glucose production in hepatocytes, an effect that is abolished when an HG-9-91-01-insensitive mutant SIK is introduced or LKB1 is ablated. Although SIK2 was proposed as a key regulator of insulin-mediated suppression of gluconeogenesis, we provide genetic evidence that liver-specific ablation of SIK2 alone has no effect on gluconeogenesis and insulin does not modulate SIK2 phosphorylation or activity. Collectively, we demonstrate that the LKB1-SIK pathway functions as a key gluconeogenic gatekeeper in the liver
    corecore