713 research outputs found

    Systemic versus localized coagulation activation contributing to organ failure in critically ill patients

    Get PDF
    In the pathogenesis of sepsis, inflammation and coagulation play a pivotal role. Increasing evidence points to an extensive cross-talk between these two systems, whereby inflammation not only leads to activation of coagulation but coagulation also considerably affects inflammatory activity. The intricate relationship between inflammation and coagulation may not only be relevant for vascular atherothrombotic disease in general but has in certain clinical settings considerable consequences, for example in the pathogenesis of microvascular failure and subsequent multiple organ failure, as a result of severe infection and the associated systemic inflammatory response. Molecular pathways that contribute to inflammation-induced activation of coagulation have been precisely identified. Pro-inflammatory cytokines and other mediators are capable of activating the coagulation system and downregulating important physiological anticoagulant pathways. Activation of the coagulation system and ensuing thrombin generation is dependent on an interleukin-6-induced expression of tissue factor on activated mononuclear cells and endothelial cells and is insufficiently counteracted by physiological anticoagulant mechanisms and endogenous fibrinolysis. Interestingly, apart from the overall systemic responses, a differential local response in various vascular beds related to specific organs may occur

    Appointments, pay and performance in UK boardrooms by gender

    Get PDF
    This article uses UK data to examine issues regarding the scarcity of women in boardroom positions. The article examines appointments, pay and any associated productivity effects deriving from increased diversity. Evidence of gender-bias in the appointment of women as non-executive directors is found together with mixed evidence of discrimination in wages or fees paid. However, the article finds no support for the argument that gender diverse boards enhance corporate performance. Proposals in favour of greater board diversity may be best structured around the moral value of diversity, rather than with reference to an expectation of improved company performance

    Superantigens from Staphylococcus aureus induce procoagulant activity and monocyte tissue factor expression in whole blood and mononuclear cells via IL-1beta.

    Get PDF
    Background: Staphylococcus aureus is one of the most common bacteria in human sepsis, a condition in which the activation of blood coagulation plays a critical pathophysiological role. During severe sepsis and septic shock microthrombi and multiorgan dysfunction are observed as a result of bacterial interference with the host defense and coagulation systems. Objectives: In the present study, staphylococcal superantigens were tested for their ability to induce procoagulant activity and tissue factor (TF) expression in human whole blood and in peripheral blood mononuclear cells. Methods and results: Determination of clotting time showed that enterotoxin A, B and toxic shock syndrome toxin 1 from S. aureus induce procoagulant activity in whole blood and in mononuclear cells. The procoagulant activity was dependent on the expression of TF in monocytes since antibodies to TF inhibited the effect of the toxins and TF was detected on the surface of monocytes by flow cytometry. In the supernatants from staphylococcal toxin-stimulated mononuclear cells, interleukin (IL)-1beta was detected by ELISA. Furthermore, the increased procoagulant activity and TF expression in monocytes induced by the staphylococcal toxins were inhibited in the presence of IL-1 receptor antagonist, a natural inhibitor of IL-1beta. Conclusions: The present study shows that superantigens from S. aureus activate the extrinsic coagulation pathway by inducing expression of TF in monocytes, and that the expression is mainly triggered by superantigen-induced IL-1beta release

    Recombinant activated factor VII (Novo7®) in patients with ventricular assist devices: Case report and review of the current literature

    Get PDF
    Postoperative bleeding might become a serious problem in the management of cardiac surgical patients, with marked medical and economic impact. In these life-threatening situations, massive haemorrhage represents frequently a combination of surgical and coagulopathic bleeding. Surgical bleeding results from a definite source at the operation site and can be corrected using surgical standard techniques. Acute coagulopathies, in contrast, result from impaired thrombin formation, and require optimized therapeutical strategies. Effective pharmacological treatment will be complicated by the presence of ventricular assist devices (VAD), which necessarily imply effective anticoagulation

    Management of upper airway edema caused by hereditary angioedema

    Get PDF
    Hereditary angioedema is a rare disorder with a genetic background involving mutations in the genes encoding C1-INH and of factor XII. Its etiology is unknown in a proportion of cases. Recurrent edema formation may involve the subcutis and the submucosa - the latter can produce obstruction in the upper airways and thereby lead to life-threatening asphyxia. This is the reason for the high, 30-to 50-per-cent mortality of undiagnosed or improperly managed cases. Airway obstruction can be prevented through early diagnosis, meaningful patient information, timely recognition of initial symptoms, state-of-the-art emergency therapy, and close monitoring of the patient. Prophylaxis can substantially mitigate the risk of upper airway edema and also improve the patients' quality of life. Notwithstanding the foregoing, any form of upper airway edema should be regarded as a potentially life-threatening condition. None of the currently available prophylactic modalities is capable of preventing UAE with absolute certainty

    A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System

    Get PDF
    Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general “house-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system

    Modeling Magnification and Anisotropy in the Primate Foveal Confluence

    Get PDF
    A basic organizational principle of the primate visual system is that it maps the visual environment repeatedly and retinotopically onto cortex. Simple algebraic models can be used to describe the projection from visual space to cortical space not only for V1, but also for the complex of areas V1, V2 and V3. Typically a conformal (angle-preserving) projection ensuring local isotropy is regarded as ideal and primate visual cortex is often regarded as an approximation of this ideal. However, empirical data show systematic deviations from this ideal that are especially relevant in the foveal projection. The aims of this study were to map the nature of anisotropy predicted by existing models, to investigate the optimization targets faced by different types of retino-cortical maps, and finally to propose a novel map that better models empirical data than other candidates. The retino-cortical map can be optimized towards a space-conserving homogenous representation or a quasi-conformal mapping. The latter would require a significantly enlarged representation of specific parts of the cortical maps. In particular it would require significant enlargement of parafoveal V2 and V3 which is not supported by empirical data. Further, the recently published principal layout of the foveal singularity cannot be explained by existing models. We suggest a new model that accurately describes foveal data, minimizing cortical surface area in the periphery but suggesting that local isotropy dominates the most foveal part at the expense of additional cortical surface. The foveal confluence is an important example of the detailed trade-offs between the compromises required for the mapping of environmental space to a complex of neighboring cortical areas. Our models demonstrate that the organization follows clear morphogenetic principles that are essential for our understanding of foveal vision in daily life

    Accounting fraud, business failure and creative auditing: A microanalysis of the strange case of the Sunbeam Corporation

    Get PDF
    This article closely examines the Sunbeam Corporation’s path to failure and explores the reasons for its singularity. From the analysis of US fraud cases included in the UCLA-LoPucki Bankruptcy Research Database, this corporate case appears as an outlier. For Sunbeam, the time-lapse between fraud disclosure and its final bankruptcy is the longest of the entire sample; it is unique because of its length. This article uses a historical microanalysis to evaluate different hypotheses about the Sunbeam Corporation’s path to failure. The relationships between acquisitions and fraud, ‘scapegoat dynamics’ and ‘creative auditing’ are identified as the most relevant issues to be examined against a changing institutional context. The resulting reconstruction of the events provides unexpected insights and recommendations for future research on auditing and accounting fraud

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
    corecore