637 research outputs found
Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex
Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences
Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk
When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency
Minimum Description Length Control
We propose a novel framework for multitask reinforcement learning based on the minimum description length (MDL) principle. In this approach, which we term MDL-control (MDL-C), the agent learns the common structure among the tasks with which it is faced and then distills it into a simpler representation which facilitates faster convergence and generalization to new tasks. In doing so, MDL-C naturally balances adaptation to each task with epistemic uncertainty about the task distribution. We motivate MDL-C via formal connections between the MDL principle and Bayesian inference, derive theoretical performance guarantees, and demonstrate MDL-C's empirical effectiveness on both discrete and high-dimensional continuous control tasks
Imbalanced decision hierarchy in addicts emerging from drug-hijacked dopamine spiraling circuit
Despite explicitly wanting to quit, long-term addicts find themselves powerless to resist drugs, despite knowing that drug-taking may be a harmful course of action. Such inconsistency between the explicit knowledge of negative consequences and the compulsive behavioral patterns represents a cognitive/behavioral conflict that is a central characteristic of addiction. Neurobiologically, differential cue-induced activity in distinct striatal subregions, as well as the dopamine connectivity spiraling from ventral striatal regions to the dorsal regions, play critical roles in compulsive drug seeking. However, the functional mechanism that integrates these neuropharmacological observations with the above-mentioned cognitive/behavioral conflict is unknown. Here we provide a formal computational explanation for the drug-induced cognitive inconsistency that is apparent in the addicts' “self-described mistake”. We show that addictive drugs gradually produce a motivational bias toward drug-seeking at low-level habitual decision processes, despite the low abstract cognitive valuation of this behavior. This pathology emerges within the hierarchical reinforcement learning framework when chronic exposure to the drug pharmacologically produces pathologicaly persistent phasic dopamine signals. Thereby the drug hijacks the dopaminergic spirals that cascade the reinforcement signals down the ventro-dorsal cortico-striatal hierarchy. Neurobiologically, our theory accounts for rapid development of drug cue-elicited dopamine efflux in the ventral striatum and a delayed response in the dorsal striatum. Our theory also shows how this response pattern depends critically on the dopamine spiraling circuitry. Behaviorally, our framework explains gradual insensitivity of drug-seeking to drug-associated punishments, the blocking phenomenon for drug outcomes, and the persistent preference for drugs over natural rewards by addicts. The model suggests testable predictions and beyond that, sets the stage for a view of addiction as a pathology of hierarchical decision-making processes. This view is complementary to the traditional interpretation of addiction as interaction between habitual and goal-directed decision systems
No Evidence That Gratitude Enhances Neural Performance Monitoring or Conflict-Driven Control
It has recently been suggested that gratitude can benefit self-regulation by reducing impulsivity during economic decision making. We tested if comparable benefits of gratitude are observed for neural performance monitoring and conflict-driven self-control. In a pre-post design, 61 participants were randomly assigned to either a gratitude or happiness condition, and then performed a pre-induction flanker task. Subsequently, participants recalled an autobiographical event where they had felt grateful or happy, followed by a post-induction flanker task. Despite closely following existing protocols, participants in the gratitude condition did not report elevated gratefulness compared to the happy group. In regard to self-control, we found no association between gratitude--operationalized by experimental condition or as a continuous predictor--and any control metric, including flanker interference, post-error adjustments, or neural monitoring (the error-related negativity, ERN). Thus, while gratitude might increase economic patience, such benefits may not generalize to conflict-driven control processes
The statistical neuroanatomy of frontal networks in the macaque
We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework
Sharing tasks or sharing actions? Evidence from the joint Simon task.
In a joint Simon task, a pair of co-acting individuals divide labors of performing a choice-reaction task in such a way that each actor responds to one type of stimuli and ignores the other type that is assigned to the co-actor. It has been suggested that the actors share the mental representation of the joint task and perform the co-actor’s trials as if they were their own. However, it remains unclear exactly which aspects of co-actor’s task-set the actors share in the joint Simon task. The present study addressed this issue by manipulating the proportions of compatible and incompatible trials for one actor (inducer actor) and observing its influences on the performance of the other actor (diagnostic actor) for whom there were always an equal proportion of compatible and incompatible trials. The design of the present study disentangled the effect of trial proportion from the confounding effect of compatibility on the preceding trial. The results showed that the trial proportions for the inducer actor had strong influences on the inducer actor’s own performance, but it had little influence on the diagnostic actor’s performance. Thus, the diagnostic actor did not represent aspects of the inducer actor’s task-set beyond stimuli and responses of the inducer actor. We propose a new account of the effect of preceding compatibility on the joint Simon effect.Action Contro
Long-term associative learning predicts verbal short-term memory performance
Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting
Affective Influences without Approach-Avoidance Actions: On the Congruence Between Valence and Stimulus-Response Mappings
The valence of stimuli can influence performance in the spatial stimulus–response compatibility task, but this observation could arise from the process of selecting responses or selecting stimulus–response mappings. The response-selection account proposes that spatial compatible and incompatible keypress responses serve as approaching and avoiding actions to a valenced target. The mapping-selection account suggests that there is congruence between stimulus valence and stimulus–response mappings; positive-compatible/negative-incompatible is more congruent than negative-compatible/positive-incompatible. Whereas affective valence was part of the target stimuli to which participants responded in previous studies, the present study isolated affective valence from the target by presenting an additional mapping cue separately from the target, so that spatially compatible and incompatible keypress responses could no longer serve as approaching and avoiding actions to valenced target stimuli. The present results revealed that responses were still faster when positive and negative mapping cues were assigned to the spatially compatible and incompatible mappings than when the assignment was reversed. The finding supports the mapping-selection account, indicating that positive and negative cues influence performance without approach–avoidance actions to valenced stimuli. The experiment provides important implications as to how tasks are represented and are dependent on affective processing
Localized microstimulation of primate pregenual cingulate cortex induces negative decision-making
The pregenual anterior cingulate cortex (pACC) has been implicated in human anxiety disorders and depression, but the circuit-level mechanisms underlying these disorders are unclear. In healthy individuals, the pACC is involved in cost-benefit evaluation. We developed a macaque version of an approach-avoidance decision task used to evaluate anxiety and depression in humans and, with multi-electrode recording and cortical microstimulation, we probed pACC function as monkeys performed this task. We found that the macaque pACC has an opponent process-like organization of neurons representing motivationally positive and negative subjective value. Spatial distribution of these two neuronal populations overlapped in the pACC, except in one subzone, where neurons with negative coding were more numerous. Notably, microstimulation in this subzone, but not elsewhere in the pACC, increased negative decision-making, and this negative biasing was blocked by anti-anxiety drug treatment. This cortical zone could be critical for regulating negative emotional valence and anxiety in decision-making.National Institutes of Health (U.S.) (Javits Merit Grant R01 NS025529)United States. Office of Naval Research (N000140710903)National Parkinson Foundation (U.S.) (Lynn Diamond Fellowship
- …
