341 research outputs found

    Statistical analysis of human boy movement and group interactions in response to music

    Get PDF
    Quantification of time series that relate to physiological data is challenging for empirical music research. Up to now, most studies have focused on time-dependent responses of individual subjects in controlled environments. However, little is known about time-dependent responses of between-subject interactions in an ecological context. This paper provides new findings on the statistical analysis of group synchronicity in response to musical stimuli. Different statistical techniques were applied to time-dependent data obtained from an experiment on embodied listening in individual and group settings. Analysis of inter group synchronicity are described. Dynamic Time Warping (DTW) and Cross Correlation Function (CCF) were found to be valid methods to estimate group coherence of the resulting movements. It was found that synchronicity of movements between individuals (human human interactions) increases significantly in the social context. Moreover, Analysis of Variance (ANOVA) revealed that the type of music is the predominant factor in both the individual and the social context

    Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors

    Get PDF
    V.F. acknowledges a UQ Postdoctoral Fellowship. This work was supported by the Australian Research Council Grant DP110100539. The authors acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis (The University of Queensland). The Ghent University Special Research Fund (BOF) is acknowledged for the postdoctoral grant of M.N.B

    Coordinated Sumoylation and Ubiquitination Modulate EGF Induced EGR1 Expression and Stability

    Get PDF
    Abstract: Background: Human early growth response-1 (EGR1) is a member of the zing-finger family of transcription factors induced by a range of molecular and environmental stimuli including epidermal growth factor (EGF). In a recently published paper we demonstrated that integrin/EGFR cross-talk was required for Egr1 expression through activation of the Erk1/2 and PI3K/Akt/Forkhead pathways. EGR1 activity and stability can be influenced by many different post-translational modifications such as acetylation, phosphorylation, ubiquitination and the recently discovered sumoylation. The aim of this work was to assess the influence of sumoylation on EGF induced Egr1 expression and/or stability. Methods: We modulated the expression of proteins involved in the sumoylation process in ECV304 cells by transient transfection and evaluated Egr1 expression in response to EGF treatment at mRNA and protein levels. Results: We demonstrated that in ECV304 cells Egr1 was transiently induced upon EGF treatment and a fraction of the endogenous protein was sumoylated. Moreover, SUMO-1/Ubc9 over-expression stabilized EGF induced ERK1/2 phosphorylation and increased Egr1 gene transcription. Conversely, in SUMO-1/Ubc9 transfected cells, EGR1 protein levels were strongly reduced. Data obtained from protein expression and ubiquitination analysis, in the presence of the proteasome inhibitor MG132, suggested that upon EGF stimuli EGR1 sumoylation enhanced its turnover, increasing ubiquitination and proteasome mediated degradation. Conclusions: Here we demonstrate that SUMO-1 modification improving EGR1 ubiquitination is involved in the modulation of its stability upon EGF mediated induction

    Characterization and Regulation of the Osmolyte Betaine Synthesizing Enzymes GSMT and SDMT from Halophilic Methanogen Methanohalophilus portucalensis

    Get PDF
    The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize the osmolyte betaine de novo in response to extracellular salt stress. Betaine is generated by the stepwise methylation of glycine to form sarcosine, N, N-dimethylglycine and betaine by using S-adenosyl-L-methionine (AdoMet) as the methyl donor. The complete gene cluster of Mpgsmt-sdmt was cloned from Southern hybridization and heterologous expressed in E. coli respectively. The recombinant MpGSMT and MpSDMT both retained their in vivo functional activities in E. coli BL21(DE3)RIL to synthesize and accumulate betaine and conferred elevated survival ability in betaine transport deficient mutant E. coli MKH13 under high salt stress. The dramatic activating effects of sodium and potassium ions on the in vitro methyltransferase activities of MpGSMT, but not MpSDMT or bacterial GSMT and SDMT, revealed that GSMT from halophilic methanoarchaeon possesses novel regulate mechanism in betaine biosynthesis pathway. The circular dichroism spectra showed the fluctuated peaks at 206 nm were detected in the MpGSMT under various concentrations of potassium or sodium ions. This fluctuated difference may cause by a change in the β-turn structure located at the conserved glycine- and sarcosine-binding residue Arg167 of MpGSMT. The analytical ultracentrifugation analysis indicated that the monomer MpGSMT switched to dimeric form increased from 7.6% to 70% with KCl concentration increased from 0 to 2.0 M. The level of potassium and sodium ions may modulate the substrate binding activity of MpGSMT through the conformational change. Additionally, MpGSMT showed a strong end product, betaine, inhibitory effect and was more sensitive to the inhibitor AdoHcy. The above results indicated that the first enzymatic step involved in synthesizing the osmolyte betaine in halophilic archaea, namely, GSMT, may also play a major role in coupling the salt-in and compatible solute (osmolyte) osmoadaptative strategies in halophilic methanogens for adapting to high salt environments

    SNP array-based whole genome homozygosity mapping as the first step to a molecular diagnosis in patients with Charcot-Marie-Tooth disease

    Get PDF
    Considerable non-allelic heterogeneity for autosomal recessively inherited Charcot-Marie-Tooth (ARCMT) disease has challenged molecular testing and often requires a large amount of work in terms of DNA sequencing and data interpretation or remains unpractical. This study tested the value of SNP array-based whole-genome homozygosity mapping as a first step in the molecular genetic diagnosis of sporadic or ARCMT in patients from inbred families or outbred populations with the ancestors originating from the same geographic area. Using 10 K 2.0 and 250 K Nsp Affymetrix SNP arrays, 15 (63%) of 24 CMT patients received an accurate genetic diagnosis. We used our Java-based script eHoPASA CMT—easy Homozygosity Profiling of SNP arrays for CMT patients to display the location of homozygous regions and their extent of marker count and base-pairs throughout the whole genome. CMT4C was the most common genetic subtype with mutations detected in SH3TC2, one (p.E632Kfs13X) appearing to be a novel founder mutation. A sporadic patient with severe CMT was homozygous for the c.250G > C (p.G84R) HSPB1 mutation which has previously been reported to cause autosomal dominant dHMN. Two distantly related CMT1 patients with early disease onset were found to carry a novel homozygous mutation in MFN2 (p.N131S). We conclude that SNP array-based homozygosity mapping is a fast, powerful, and economic tool to guide molecular genetic testing in ARCMT and in selected sporadic CMT patients

    Purification and Characterization of a Sperm Motility Inhibiting Factor from Caprine Epididymal Plasma

    Get PDF
    Several studies have been reported on the occurrence of sperm motility inhibiting factors in the male reproductive fluids of different mammalian species, but these proteins have not been adequately purified and characterized. A novel sperm motility inhibiting factor (MIF-II) has been purified from caprine epididymal plasma (EP) by Hydroxylapatite gel adsorption chromatography, DEAE-Cellulose ion-exchange chromatography and chromatofocusing. The MIF-II has been purified to apparent homogeneity and the molecular weight estimated by Sephacryl S-300 gel filtration is 160 kDa. MIF-II is a dimeric protein, made up of two subunits each having a molecular mass of 80 kDa as shown by SDS-PAGE. The isoelectric point of MIF-II is 5.1 as determined by chromatofocusing and isoelectric focusing. It is a heat labile protein and maximal active at the pH 6.9 to 7.5. The sperm motility inhibiting protein factor at 2 µg/ml (12.5 nM) level showed maximal motility-inhibiting activity. The observation that the epididymal plasma factor lowered the intracellular cAMP level of spermatozoa in a concentration-dependent manner suggests that it may block the motility of caprine cauda spermatozoa by interfering the cAMP dependent motility function. The results revealed that the purified protein factor has the potential of sperm motility inhibition and may serve as a vaginal contraceptive. The antibody raised against the MIF-II has the potential for enhancement of forward motility of cauda-spermatozoa. This antibody may thus be useful for solving some of the problems of male infertility due to low sperm motility

    Olfactory Stem Cells, a New Cellular Model for Studying Molecular Mechanisms Underlying Familial Dysautonomia

    Get PDF
    International audienceBackground: Familial dysautonomia (FD) is a hereditary neuropathy caused by mutations in the IKBKAP gene, the most common of which results in variable tissue-specific mRNA splicing with skipping of exon 20. Defective splicing is especially severe in nervous tissue, leading to incomplete development and progressive degeneration of sensory and autonomic neurons. The specificity of neuron loss in FD is poorly understood due to the lack of an appropriate model system. To better understand and modelize the molecular mechanisms of IKBKAP mRNA splicing, we collected human olfactory ecto-mesenchymal stem cells (hOE-MSC) from FD patients. hOE-MSCs have a pluripotent ability to differentiate into various cell lineages, including neurons and glial cells.Methodology/Principal Findings: We confirmed IKBKAP mRNA alternative splicing in FD hOE-MSCs and identified 2 novel spliced isoforms also present in control cells. We observed a significant lower expression of both IKBKAP transcript and IKAP/hELP1 protein in FD cells resulting from the degradation of the transcript isoform skipping exon 20. We localized IKAP/hELP1 in different cell compartments, including the nucleus, which supports multiple roles for that protein. We also investigated cellular pathways altered in FD, at the genome-wide level, and confirmed that cell migration and cytoskeleton reorganization were among the processes altered in FD. Indeed, FD hOE-MSCs exhibit impaired migration compared to control cells. Moreover, we showed that kinetin improved exon 20 inclusion and restores a normal level of IKAP/hELP1 in FD hOE-MSCs. Furthermore, we were able to modify the IKBKAP splicing ratio in FD hOE-MSCs, increasing or reducing the WT (exon 20 inclusion):MU (exon 20 skipping) ratio respectively, either by producing free-floating spheres, or by inducing cells into neural differentiation.Conclusions/Significance: hOE-MSCs isolated from FD patients represent a new approach for modeling FD to better understand genetic expression and possible therapeutic approaches. This model could also be applied to other neurological genetic diseases

    Aging and Visual Counting

    Get PDF
    Much previous work on how normal aging affects visual enumeration has been focused on the response time required to enumerate, with unlimited stimulus duration. There is a fundamental question, not yet addressed, of how many visual items the aging visual system can enumerate in a "single glance", without the confounding influence of eye movements.We recruited 104 observers with normal vision across the age span (age 21-85). They were briefly (200 ms) presented with a number of well- separated black dots against a gray background on a monitor screen, and were asked to judge the number of dots. By limiting the stimulus presentation time, we can determine the maximum number of visual items an observer can correctly enumerate at a criterion level of performance (counting threshold, defined as the number of visual items at which ≈63% correct rate on a psychometric curve), without confounding by eye movements. Our findings reveal a 30% decrease in the mean counting threshold of the oldest group (age 61-85: ∼5 dots) when compared with the youngest groups (age 21-40: 7 dots). Surprisingly, despite decreased counting threshold, on average counting accuracy function (defined as the mean number of dots reported for each number tested) is largely unaffected by age, reflecting that the threshold loss can be primarily attributed to increased random errors. We further expanded this interesting finding to show that both young and old adults tend to over-count small numbers, but older observers over-count more.Here we show that age reduces the ability to correctly enumerate in a glance, but the accuracy (veridicality), on average, remains unchanged with advancing age. Control experiments indicate that the degraded performance cannot be explained by optical, retinal or other perceptual factors, but is cortical in origin

    Primary biliary cirrhosis

    Get PDF
    Primary biliary cirrhosis (PBC) is a chronic and slowly progressive cholestatic liver disease of autoimmune etiology characterized by injury of the intrahepatic bile ducts that may eventually lead to liver failure. Affected individuals are usually in their fifth to seventh decades of life at time of diagnosis, and 90% are women. Annual incidence is estimated between 0.7 and 49 cases per million-population and prevalence between 6.7 and 940 cases per million-population (depending on age and sex). The majority of patients are asymptomatic at diagnosis, however, some patients present with symptoms of fatigue and/or pruritus. Patients may even present with ascites, hepatic encephalopathy and/or esophageal variceal hemorrhage. PBC is associated with other autoimmune diseases such as Sjogren's syndrome, scleroderma, Raynaud's phenomenon and CREST syndrome and is regarded as an organ specific autoimmune disease. Genetic susceptibility as a predisposing factor for PBC has been suggested. Environmental factors may have potential causative role (infection, chemicals, smoking). Diagnosis is based on a combination of clinical features, abnormal liver biochemical pattern in a cholestatic picture persisting for more than six months and presence of detectable antimitochondrial antibodies (AMA) in serum. All AMA negative patients with cholestatic liver disease should be carefully evaluated with cholangiography and liver biopsy. Ursodeoxycholic acid (UDCA) is the only currently known medication that can slow the disease progression. Patients, particularly those who start UDCA treatment at early-stage disease and who respond in terms of improvement of the liver biochemistry, have a good prognosis. Liver transplantation is usually an option for patients with liver failure and the outcome is 70% survival at 7 years. Recently, animal models have been discovered that may provide a new insight into the pathogenesis of this disease and facilitate appreciation for novel treatment in PBC
    corecore