1,034 research outputs found

    Asymptotic Energy Dependence of Hadronic Total Cross Sections from Lattice QCD

    Full text link
    The nonperturbative approach to soft high-energy hadron-hadron scattering, based on the analytic continuation of Wilson-loop correlation functions from Euclidean to Minkowskian theory, allows to investigate the asymptotic energy dependence of hadron-hadron total cross sections in lattice QCD. In this paper we will show, using best fits of the lattice data with proper functional forms satisfying unitarity and other physical constraints, how indications emerge in favor of a universal asymptotic high-energy behavior of the kind B log^2 s for hadronic total cross sections.Comment: Revised and extended version; 29 pages, 4 figure

    The Effects of Previous Misestimation of Task Duration on Estimating Future Task Duration

    Get PDF
    It is a common time management problem that people underestimate the duration of tasks, which has been termed the "planning fallacy." To overcome this, it has been suggested that people should be informed about how long they previously worked on the same task. This study, however, tests whether previous misestimation also affects the duration estimation of a novel task, even if the feedback is only self-generated. To test this, two groups of participants performed two unrelated, laboratory-based tasks in succession. Learning was manipulated by permitting only the experimental group to retrospectively estimate the duration of the first task before predicting the duration of the second task. Results showed that the experimental group underestimated the duration of the second task less than the control group, which indicates a general kind of learning from previous misestimation. The findings imply that people could be trained to carefully observe how much they misestimate task duration in order to stimulate learning. The findings are discussed in relation to the anchoring account of task duration misestimation and the memory-bias account of the planning fallacy. © 2014 Springer Science+Business Media New York

    Evaluation of the impact of a school gardening intervention on children's fruit and vegetable intake: a randomised controlled trial.

    Get PDF
    Background: Current academic literature suggests that school gardening programmes can provide an interactive environment with the potential to change children’s fruit and vegetable intake. This is the first cluster randomised controlled trial (RCT) designed to evaluate whether a school gardening programme can have an effect on children’s fruit and vegetable intake. Methods: The trial included children from 23 schools; these schools were randomised into two groups, one to receive the Royal Horticultural Society (RHS)-led intervention and the other to receive the less involved Teacher-led intervention. A 24-hour food diary (CADET) was used to collect baseline and follow-up dietary intake 18 months apart. Questionnaires were also administered to evaluate the intervention implementation. Results: A total of 641 children completed the trial with a mean age of 8.1 years (95% CI: 8.0, 8.4). The unadjusted results from multilevel regression analysis revealed that for combined daily fruit and vegetable intake the Teacher-led group had a higher daily mean change of 8 g (95% CI: −19, 36) compared to the RHS-led group -32 g (95% CI: −60, −3). However, after adjusting for possible confounders this difference was not significant (intervention effect: −40 g, 95% CI: −88, 1; p = 0.06). The adjusted analysis of process measures identified that if schools improved their gardening score by 3 levels (a measure of school gardening involvement - the scale has 6 levels from 0 ‘no garden’ to 5 ‘community involvement’), irrespective of group allocation, children had, on average, a daily increase of 81 g of fruit and vegetable intake (95% CI: 0, 163; p = 0.05) compared to schools that had no change in gardening score. Conclusions: This study is the first cluster randomised controlled trial designed to evaluate a school gardening intervention. The results have found very little evidence to support the claims that school gardening alone can improve children’s daily fruit and vegetable intake. However, when a gardening intervention is implemented at a high level within the school it may improve children’s daily fruit and vegetable intake by a portion. Improving children’s fruit and vegetable intake remains a challenging task

    Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects

    Full text link
    We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, kTk_T factorization including low-xx resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at 77 TeV and at 1313 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10%10\% to 50%50 \% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.Comment: 61 pages, 25 figures, 11 table

    Inhibition of neuroinflammation in BV2 microglia by the biflavonoid kolaviron is dependent on the Nrf2/ARE antioxidant protective mechanism

    Get PDF
    Kolaviron is a mixture of bioflavonoids found in the nut of the West African edible seed Garcinia kola, and it has been reported to exhibit a wide range of pharmacological activities. In this study, we investigated the effects of kolaviron in neuroinflammation. The effects of kolaviron on the expression of nitric oxide/inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2)/cyclooxygenase-2, cellular reactive oxygen species (ROS) and the pro-inflammatory cytokines were examined in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Molecular mechanisms of the effects of kolaviron on NF-B and Nrf2/ARE signalling pathways were analysed by immunoblotting, binding assay, and reporter assay. RNA interference was used to investigate the role of Nrf2 in the anti-inflammatory effect of kolaviron. Neuroprotective effect of kolaviron was assessed in a BV2 microglia/HT22 hippocampal neuron co-culture. Kolaviron inhibited the protein levels of NO/iNOS, PGE2/COX-2, cellular ROS and the proinflammatory cytokines (TNFα and IL-6) in LPS-stimulated microglia. Further mechanistic studies showed that kolaviron inhibited neuroinflammation by inhibiting IB/NF-B signalling pathway in LPS-activated BV2 microglia. Kolaviron produced antioxidant effect in BV2 microglia by increasing HO-1 via the Nrf2/ antioxidant response element (ARE) pathway. RNAi experiments revealed that Nrf2 is need for the anti-inflammatory effect of kolaviron. Kolaviron protected HT22 neurons from neuroinflammation-induced toxicity. Kolaviron inhibits neuroinflammation through Nrf2-dependent mechanisms. This compound may therefore be beneficial in neuroinflammation-related neurodegenerative disorders

    A structured review of long-term care demand modelling

    Get PDF
    Long-term care (LTC) represents a significant and substantial proportion of healthcare spends across the globe. Its main aim is to assist individuals suffering with more or more chronic illnesses, disabilities or cognitive impairments, to carry out activities associated with daily living. Shifts in several economic, demographic and social factors have raised concerns surrounding the sustainability of current systems of LTC. Substantial effort has been put into modelling the LTC demand process itself so as to increase understanding of the factors driving demand for LTC and its related services. Furthermore, such modeling efforts have also been used to plan the operation and future composition of the LTC system itself. The main aim of this paper is to provide a structured review of the literature surrounding LTC demand modeling and any such industrial application, whilst highlighting any potential direction for future researchers

    Improving biomass production and saccharification in Brachypodium distachyon through overexpression of a sucrose-phosphate synthase from sugarcane

    Get PDF
    The substitution of fossil by renewable energy sources is a major strategy in reducing CO2 emission and mitigating climate change. In the transport sector, which is still mainly dependent on liquid fuels, the production of second generation ethanol from lignocellulosic feedstock is a promising strategy to substitute fossil fuels. The main prerequisites on designated crops for increased biomass production are high biomass yield and optimized saccharification for subsequent use in fermentation processes. We tried to address these traits by the overexpression of a sucrose-phosphate synthase gene (SoSPS) from sugarcane (Saccharum officinarum) in the model grass Brachypodium distachyon. The resulting transgenic B. distachyon lines not only revealed increased plant height at early growth stages but also higher biomass yield from fully senesced plants, which was increased up to 52 % compared to wild-type. Additionally, we determined higher sucrose content in senesced leaf biomass from the transgenic lines, which correlated with improved biomass saccharification after conventional thermo-chemical pretreatment and enzymatic hydrolysis. Combining increased biomass production and saccharification efficiency in the generated B. distachyon SoSPS overexpression lines, we obtained a maximum of 74 % increase in glucose release per plant compared to wild-type. Therefore, we consider SoSPS overexpression as a promising approach in molecular breeding of energy crops for optimizing yields of biomass and its utilization in second generation biofuel production

    Biocatalytic Synthesis of Polymers of Precisely Defined Structures

    Get PDF
    The fabrication of functional nanoscale devices requires the construction of complex architectures at length scales characteristic of atoms and molecules. Currently microlithography and micro-machining of macroscopic objects are the preferred methods for construction of small devices, but these methods are limited to the micron scale. An intriguing approach to nanoscale fabrication involves the association of individual molecular components into the desired architectures by supramolecular assembly. This process requires the precise specification of intermolecular interactions, which in turn requires precise control of molecular structure

    Optical Trapping with High Forces Reveals Unexpected Behaviors of Prion Fibrils

    Get PDF
    Amyloid fibrils are important in diverse cellular functions, feature in many human diseases and have potential applications in nanotechnology. Here we describe methods that combine optical trapping and fluorescent imaging to characterize the forces that govern the integrity of amyloid fibrils formed by a yeast prion protein. A crucial advance was to use the self-templating properties of amyloidogenic proteins to tether prion fibrils, enabling their manipulation in the optical trap. At normal pulling forces the fibrils were impervious to disruption. At much higher forces (up to 250 pN), discontinuities occurred in force-extension traces before fibril rupture. Experiments with selective amyloid-disrupting agents and mutations demonstrated that such discontinuities were caused by the unfolding of individual subdomains. Thus, our results reveal unusually strong noncovalent intermolecular contacts that maintain fibril integrity even when individual monomers partially unfold and extend fibril length.National Institutes of Health (U.S.) (Grant GM025874)National Science Foundation (U.S.). CAREER (Award 0643745

    Protein disulphide isomerase-assisted functionalization of proteinaceous substrates

    Get PDF
    Protein disulphide isomerase (PDI) is an enzyme that catalyzes thiol-disulphide exchange reactions among a broad spectrum of substrates, including proteins and low-molecular thiols and disulphides. As the first protein-folding catalyst reported, the study of PDI has mainly involved the correct folding of several cysteine-containing proteins. Its application on the functionalization of protein-based materials has not been extensively reported. Herein, we review the applications of PDI on the modification of proteinaceous substrates and discuss its future potential. The mechanism involved in PDI functionalization of fibrous protein substrates is discussed in detail. These approaches allow innovative applications in textile dyeing and finishing, medical textiles, controlled drug delivery systems and hair or skin care products.We thank to FCT 'Fundacao para a Ciencia e Tecnologia' (scholarship SFRH/BD/38363/2007) for providing Margarida Fernandes the grant for PhD studies
    corecore