79 research outputs found
THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria
Phenotypic screens for bactericidal compounds against drug-resistant tuberculosis are beginning to yield novel inhibitors. However, reliable target identification remains challenging. Here, we show that tetrahydropyrazo[1,5-a]pyrimidine-3-carboxamide (THPP) selectively pulls down EchA6 in a stereospecific manner, instead of the previously assigned target Mycobacterium tuberculosis MmpL3. While homologous to mammalian enoyl-coenzyme A (CoA) hydratases, EchA6 is non-catalytic yet essential and binds long-chain acyl-CoAs. THPP inhibitors compete with CoA-binding, suppress mycolic acid synthesis, and are bactericidal in a mouse model of chronic tuberculosis infection. A point mutation, W133A, abrogated THPP-binding and increased both the in vitro minimum inhibitory concentration and the in vivo effective dose 99 in mice. Surprisingly, EchA6 interacts with selected enzymes of fatty acid synthase II (FAS-II) in bacterial two-hybrid assays, suggesting essentiality may be linked to feeding long-chain fatty acids to FAS-II. Finally, our data show that spontaneous resistance-conferring mutations can potentially obscure the actual target or alternative targets of small molecule inhibitors
Genetic Basis of Growth Adaptation of Escherichia coli after Deletion of pgi, a Major Metabolic Gene
Bacterial survival requires adaptation to different environmental perturbations such as exposure to antibiotics, changes in temperature or oxygen levels, DNA damage, and alternative nutrient sources. During adaptation, bacteria often develop beneficial mutations that confer increased fitness in the new environment. Adaptation to the loss of a major non-essential gene product that cripples growth, however, has not been studied at the whole-genome level. We investigated the ability of Escherichia coli K-12 MG1655 to overcome the loss of phosphoglucose isomerase (pgi) by adaptively evolving ten replicates of E. coli lacking pgi for 50 days in glucose M9 minimal medium and by characterizing endpoint clones through whole-genome re-sequencing and phenotype profiling. We found that 1) the growth rates for all ten endpoint clones increased approximately 3-fold over the 50-day period; 2) two to five mutations arose during adaptation, most frequently in the NADH/NADPH transhydrogenases udhA and pntAB and in the stress-associated sigma factor rpoS; and 3) despite similar growth rates, at least three distinct endpoint phenotypes developed as defined by different rates of acetate and formate secretion. These results demonstrate that E. coli can adapt to the loss of a major metabolic gene product with only a handful of mutations and that adaptation can result in multiple, alternative phenotypes
Identification of KasA as the cellular target of an anti-tubercular scaffold
Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis β-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography. Finally, M. tuberculosis GSK3011724A-resistant mutants increase the in vitro minimum inhibitory concentration and the in vivo 99% effective dose in mice, establishing in vitro and in vivo target engagement. Surprisingly, the lack of target engagement of the related β-ketoacyl synthases (FabH and KasB) suggests a different mode of inhibition when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria. These results clearly identify KasA as the biological target of GSK3011724A and validate this enzyme for further drug discovery efforts against tuberculosis
Pulsed Electromagnetic Fields in the treatment of fresh scaphoid fractures. A multicenter, prospective, double blind, placebo controlled, randomized trial
Contains fulltext :
96247.pdf (publisher's version ) (Open Access)BACKGROUND: The scaphoid bone is the most commonly fractured of the carpal bones. In the Netherlands 90% of all carpal fractures is a fracture of the scaphoid bone. The scaphoid has an essential role in functionality of the wrist, acting as a pivot. Complications in healing can result in poor functional outcome. The scaphoid fracture is a troublesome fracture and failure of treatment can result in avascular necrosis (up to 40%), non-union (5-21%) and early osteo-arthritis (up to 32%) which may seriously impair wrist function. Impaired consolidation of scaphoid fractures results in longer immobilization and more days lost at work with significant psychosocial and financial consequences.Initially Pulsed Electromagnetic Fields was used in the treatment of tibial pseudoarthrosis and non-union. More recently there is evidence that physical forces can also be used in the treatment of fresh fractures, showing accelerated healing by 30% and 71% reduction in nonunion within 12 weeks after initiation of therapy. Until now no double blind randomized, placebo controlled trial has been conducted to investigate the effect of this treatment on the healing of fresh fractures of the scaphoid. METHODS/DESIGN: This is a multi center, prospective, double blind, placebo controlled, randomized trial. Study population consists of all patients with unilateral acute scaphoid fracture. Pregnant women, patients having a life supporting implanted electronic device, patients with additional fractures of wrist, carpal or metacarpal bones and pre-existing impairment in wrist function are excluded. The scaphoid fracture is diagnosed by a combination of physical and radiographic examination (CT-scanning).Proven scaphoid fractures are treated with cast immobilization and a small Pulsed Electromagnetic Fields bone growth stimulating device placed on the cast. Half of the devices will be disabled at random in the factory.Study parameters are clinical consolidation, radiological consolidation evaluated by CT-scanning, functional status of the wrist, including assessment by means of the patient rated wrist evaluation (PRWE) questionnaire and quality of life using SF-36 health survey questionnaire.Primary endpoint is number of scaphoid unions at six weeks, secondary endpoints are time interval to clinical and radiological consolidation, number of non-unions, functional status at 52 weeks and non-adherence to the treatment protocol. TRIAL REGISTRATION: Netherlands Trial Register (NTR): NTR2064
Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations
<p>Abstract</p> <p>Background</p> <p>Several mutations were present in the genome of <it>Streptococcus pneumoniae </it>linezolid-resistant strains but the role of several of these mutations had not been experimentally tested. To analyze the role of these mutations, we reconstituted resistance by serial whole genome transformation of a novel resistant isolate into two strains with sensitive background. We sequenced the parent mutant and two independent transformants exhibiting similar minimum inhibitory concentration to linezolid.</p> <p>Results</p> <p>Comparative genomic analyses revealed that transformants acquired G2576T transversions in every gene copy of 23S rRNA and that the number of altered copies correlated with the level of linezolid resistance and cross-resistance to florfenicol and chloramphenicol. One of the transformants also acquired a mutation present in the parent mutant leading to the overexpression of an ABC transporter (spr1021). The acquisition of these mutations conferred a fitness cost however, which was further enhanced by the acquisition of a mutation in a RNA methyltransferase implicated in resistance. Interestingly, the fitness of the transformants could be restored in part by the acquisition of altered copies of the L3 and L16 ribosomal proteins and by mutations leading to the overexpression of the spr1887 ABC transporter that were present in the original linezolid-resistant mutant.</p> <p>Conclusions</p> <p>Our results demonstrate the usefulness of whole genome approaches at detecting major determinants of resistance as well as compensatory mutations that alleviate the fitness cost associated with resistance.</p
Understanding Communication Signals during Mycobacterial Latency through Predicted Genome-Wide Protein Interactions and Boolean Modeling
About 90% of the people infected with Mycobacterium tuberculosis carry latent bacteria that are believed to get activated upon immune suppression. One of the fundamental challenges in the control of tuberculosis is therefore to understand molecular mechanisms involved in the onset of latency and/or reactivation. We have attempted to address this problem at the systems level by a combination of predicted functional protein∶protein interactions, integration of functional interactions with large scale gene expression studies, predicted transcription regulatory network and finally simulations with a Boolean model of the network. Initially a prediction for genome-wide protein functional linkages was obtained based on genome-context methods using a Support Vector Machine. This set of protein functional linkages along with gene expression data of the available models of latency was employed to identify proteins involved in mediating switch signals during dormancy. We show that genes that are up and down regulated during dormancy are not only coordinately regulated under dormancy-like conditions but also under a variety of other experimental conditions. Their synchronized regulation indicates that they form a tightly regulated gene cluster and might form a latency-regulon. Conservation of these genes across bacterial species suggests a unique evolutionary history that might be associated with M. tuberculosis dormancy. Finally, simulations with a Boolean model based on the regulatory network with logical relationships derived from gene expression data reveals a bistable switch suggesting alternating latent and actively growing states. Our analysis based on the interaction network therefore reveals a potential model of M. tuberculosis latency
Composition tunable cobalt–nickel and cobalt–iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl
A Comparison of Continuous Thalamic Stimulation and Thalamotomy for Suppression of Severe Tremor
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
High prevalence of oxacillinases in clinical multidrug-resistant Acinetobacter baumannii isolates from the Tshwane region, South Africa – an update
BACKGROUND : Acinetobacter baumannii is an important hospital-acquired pathogen in healthcare facilities that
frequently causes bacteraemia and ventilator-associated pneumonia in intensive care units. Acinetobacter baumannii
can be isolated from various sites in the hospital environment like medical equipment, bed linen, medical personnel
and indwelling catheters. It is difficult to treat A. baumannii infections because of their highly resistant antimicrobial
profiles. The purpose of this study was to determine the prevalence of β-lactamase genes in multidrug-resistant (MDR)
clinical A. baumannii isolates using Multiplex-PCR (M-PCR) assays.
METHODS : One hundred MDR A. baumannii isolates were collected from the diagnostic division of the Department of
Medical Microbiology after routine analysis of the submitted specimens. All collected isolates were identified and tested
for susceptibility using the VITEK 2® system (bioMérieux, France). Six isolates were excluded from this study because the
isolates were incorrectly identified as A. baumannii with the VITEK 2® system (bioMérieux, France). Molecular tests, namely
M-PCR assays, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed. MLST
analyses were performed on representative isolates from the four major pulsotypes (≥5 isolates with 80 % similarity) and
selective isolates from each minor pulsotype.
RESULTS : All the A. baumannii isolates showed 100 % resistance to ampicillin, amoxicillin, cefuroxime, cefuroximine axetil,
cefoxitin, cefotaxime and nitrofurantoin. Seven percent of the isolates were resistant to amikacin. Two percent of the
isolates were classified as having intermediate susceptibility to tigecycline. A. baumannii isolates showed an antibiotic
resistance profile of 67 % and higher to antibiotics, such as ceftazidime, cefepime, imipenem, meropenem, gentamicin,
ciprofloxacin and trimethoprim/sulfamethoxazole. None of the isolates were resistant to colistin. The M-PCR assays
showed that 99 % of the isolates contained the OXA-51 gene and 77 % contained the OXA-23 gene. None of the
isolates contained the GES, GIM, IMP, KPC, NDM, OXA-24, OXA-58, PER, SIM, SPM, VEB and VIM genes. Representative A.
baumannii isolates were grouped into five existing sequence types (ST): ST106, ST258, ST339, ST502, ST758 and ST848.
Isolates belonging to the pan-European clonal lineages I and II (EUI and EUII) were identified.
CONCLUSION : The high prevalence of MDR A. baumannii isolates has a severe impact on available treatment choices and
this in return impacts on treatment outcomes in the studied healthcare facilities. The most dominant ST among the
collected isolates was ST758, member of the EUI group. The presence of the OXA-23 gene was not restricted to a
specific ST. Continuous research and surveillance is necessary to monitor the circulating β-lactamase genes in clinical
settings to guide infection control policies in order to try and curb the spread of this bacterium.ML was supported by a
National Research Foundation (NRF) grant. The MALDI-TOF analysis is based on
research supported in part by the National Research Foundation (NRF) of South
Africa (Grant specific unique reference number (UID) 74426).http://www.biomedcentral.com/bmcinfectdis/am201
- …
