340 research outputs found

    Acute febrile illness is associated with Rickettsia spp infection in dogs

    Get PDF
    BACKGROUND: Rickettsia conorii is transmitted by Rhipicephalus sanguineus ticks and causes Mediterranean Spotted Fever (MSF) in humans. Although dogs are considered the natural host of the vector, the clinical and epidemiological significance of R. conorii infection in dogs remains unclear. The aim of this prospective study was to investigate whether Rickettsia infection causes febrile illness in dogs living in areas endemic for human MSF. METHODS: Dogs from southern Italy with acute fever (n = 99) were compared with case–control dogs with normal body temperatures (n = 72). Serology and real-time PCR were performed for Rickettsia spp., Ehrlichia canis, Anaplasma phagocytophilum/A. platys and Leishmania infantum. Conventional PCR was performed for Babesia spp. and Hepatozoon spp. Acute and convalescent antibodies to R. conorii, E. canis and A. phagocytophilum were determined. RESULTS: The seroprevalence rates at first visit for R. conorii, E. canis, A. phagocytophilum and L. infantum were 44.8%, 48.5%, 37.8% and 17.6%, respectively. The seroconversion rates for R. conorii, E. canis and A. phagocytophilum were 20.7%, 14.3% and 8.8%, respectively. The molecular positive rates at first visit for Rickettsia spp., E. canis, A. phagocytophilum, A. platys, L. infantum, Babesia spp. and Hepatozoon spp. were 1.8%, 4.1%, 0%, 2.3%, 11.1%, 2.3% and 0.6%, respectively. Positive PCR for E. canis (7%), Rickettsia spp. (3%), Babesia spp. (4.0%) and Hepatozoon spp. (1.0%) were found only in febrile dogs. The DNA sequences obtained from Rickettsia and Babesia PCRs positive samples were 100% identical to the R. conorii and Babesia vogeli sequences in GenBank¼, respectively. Febrile illness was statistically associated with acute and convalescent positive R. conorii antibodies, seroconversion to R. conorii, E. canis positive PCR, and positivity to any tick pathogen PCRs. Fourteen febrile dogs (31.8%) were diagnosed with Rickettsia spp. infection based on seroconversion and/or PCR while only six afebrile dogs (12.5%) seroconverted (P = 0.0248). The most common clinical findings of dogs with Rickettsia infection diagnosed by seroconversion and/or PCR were fever, myalgia, lameness, elevation of C-reactive protein, thrombocytopenia and hypoalbuminemia. CONCLUSIONS: This study demonstrates acute febrile illness associated with Rickettsia infection in dogs living in endemic areas of human MSF based on seroconversion alone or in combination with PCR

    Why Are There So Few Rickettsia conorii conorii-Infected Rhipicephalus sanguineus Ticks in the Wild?

    Get PDF
    The bacterium Rickettsia conorii conorii is the etiological agent of Mediterranean spotted fever (MSF), which is a life-threatening infectious disease that is transmitted by Rhipicephalus sanguineus, the brown dog tick. Rh. sanguineus-R. conorii conorii relationships in the wild are still poorly understood one century after the discovery of the disease. In this study, we collected naturally infected ticks from the houses of people afflicted by MSF in Algeria. Colonies of both infected and non-infected ticks were maintained in our laboratory, and we studied the effect of temperature variations on the infected and non-infected ticks. We did not observe any major differences between the biological life cycle of the infected and non-infected ticks held at 25°C. However, a comparatively higher mortality relative to the control group was noticed when R. conorii conorii-infected engorged nymphs and adults were exposed to a low temperature (4°C) or high temperature (37°C) for one month and transferred to 25°C. R. conorii conorii-infected Rh. sanguineus may maintain and serve as reservoirs for the Rickettsia if they are not exposed to cold temperatures. New populations of ticks might become infected with Rickettsiae when feeding on a bacteremic animal reservoir

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Movement of the human foot in 100 pain free individuals aged 18–45 : implications for understanding normal foot function

    Get PDF
    Background: Understanding motion in the normal healthy foot is a prerequisite for understanding the effects of pathology and thereafter setting targets for interventions. Quality foot kinematic data from healthy feet will also assist the development of high quality and research based clinical models of foot biomechanics. To address gaps in the current literature we aimed to describe 3D foot kinematics using a 5 segment foot model in a population of 100 pain free individuals. Methods: Kinematics of the leg, calcaneus, midfoot, medial and lateral forefoot and hallux were measured in 100 self reported healthy and pain free individuals during walking. Descriptive statistics were used to characterise foot movements. Contributions from different foot segments to the total motion in each plane were also derived to explore functional roles of different parts of the foot. Results: Foot segments demonstrated greatest motion in the sagittal plane, but large ranges of movement in all planes. All foot segments demonstrated movement throughout gait, though least motion was observed between the midfoot and calcaneus. There was inconsistent evidence of movement coupling between joints. There were clear differences in motion data compared to foot segment models reported in the literature. Conclusions: The data reveal the foot is a multiarticular structure, movements are complex, show incomplete evidence of coupling, and vary person to person. The data provide a useful reference data set against which future experimental data can be compared and may provide the basis for conceptual models of foot function based on data rather than anecdotal observations

    Behavioral Mechanism during Human Sperm Chemotaxis: Involvement of Hyperactivation

    Get PDF
    When mammalian spermatozoa become capacitated they acquire, among other activities, chemotactic responsiveness and the ability to exhibit occasional events of hyperactivated motility—a vigorous motility type with large amplitudes of head displacement. Although a number of roles have been proposed for this type of motility, its function is still obscure. Here we provide evidence suggesting that hyperactivation is part of the chemotactic response. By analyzing tracks of spermatozoa swimming in a spatial chemoattractant gradient we demonstrate that, in such a gradient, the level of hyperactivation events is significantly lower than in proper controls. This suggests that upon sensing an increase in the chemoattractant concentration capacitated cells repress their hyperactivation events and thus maintain their course of swimming toward the chemoattractant. Furthermore, in response to a temporal concentration jump achieved by photorelease of the chemoattractant progesterone from its caged form, the responsive cells exhibited a delayed turn, often accompanied by hyperactivation events or an even more intense response in the form of flagellar arrest. This study suggests that the function of hyperactivation is to cause a rather sharp turn during the chemotactic response of capacitated cells so as to assist them to reorient according to the chemoattractant gradient. On the basis of these results a model for the behavior of spermatozoa responding to a spatial chemoattractant gradient is proposed

    The fitness cost of mis-splicing is the main determinant of alternative splicing patterns

    Get PDF
    Background Most eukaryotic genes are subject to alternative splicing (AS), which may contribute to the production of protein variants or to the regulation of gene expression via nonsense-mediated messenger RNA (mRNA) decay (NMD). However, a fraction of splice variants might correspond to spurious transcripts and the question of the relative proportion of splicing errors to functional splice variants remains highly debated. Results We propose a test to quantify the fraction of AS events corresponding to errors. This test is based on the fact that the fitness cost of splicing errors increases with the number of introns in a gene and with expression level. We analyzed the transcriptome of the intron-rich eukaryote Paramecium tetraurelia. We show that in both normal and in NMD-deficient cells, AS rates strongly decrease with increasing expression level and with increasing number of introns. This relationship is observed for AS events that are detectable by NMD as well as for those that are not, which invalidates the hypothesis of a link with the regulation of gene expression. Our results show that in genes with a median expression level, 92–98% of observed splice variants correspond to errors. We observed the same patterns in human transcriptomes and we further show that AS rates correlate with the fitness cost of splicing errors. Conclusions These observations indicate that genes under weaker selective pressure accumulate more maladaptive substitutions and are more prone to splicing errors. Thus, to a large extent, patterns of gene expression variants simply reflect the balance between selection, mutation, and drift

    Room temperature triplet state spectroscopy of organic semiconductors

    Get PDF
    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is ‘dark’ with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.United States. Dept. of Energy. Center for Excitonics (Award DE-SC0001088
    • 

    corecore