331 research outputs found

    Reduced stability of mRNA secondary structure near the translation-initiation site in dsDNA viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have demonstrated a selection pressure for reduced mRNA secondary-structure stability near the start codon of coding sequences. This selection pressure can be observed in bacteria, archaea, and eukaryotes, and is likely caused by the requirement of efficient translation initiation in cellular organism.</p> <p>Results</p> <p>Here, we surveyed the complete genomes of 650 dsDNA virus strains for signals of reduced stability of mRNA secondary structure near the start codon. Our analysis included viruses infecting eukaryotic, prokaryotic, and archaeic hosts. We found that many viruses showed evidence for reduced mRNA secondary-structure stability near the start codon. The effect was most pronounced in viruses infecting prokaryotes, but was also observed in viruses infecting eukaryotes and archaea. The reduction in stability generally increased with increasing genomic GC content. For bacteriophage, the reduction was correlated with a corresponding reduction of stability in the phage hosts.</p> <p>Conclusions</p> <p>We conclude that reduced stability of the mRNA secondary structure near the start codon is a common feature for dsDNA viruses, likely driven by the same selective pressures that cause it in cellular organisms.</p

    Cloning, expression and characterization of l-asparaginase from Withania somnifera L. for large scale production

    Get PDF
    l-Asparaginase (E.C. 3.5.1.1) is used as a therapeutic agent in the treatment of acute childhood lymphoblastic leukemia. It is found in a variety of organisms such as microbes, plants and mammals. In plants, l-asparaginase enzymes are required to catalyze the release of ammonia from asparagine, which is the main nitrogen-relocation molecule in these organisms. An Indian medicinal plant, Withania somnifera was reported as a novel source of l-asparaginase. l-Asparaginase from W. somnifera was cloned and overexpressed in E. coli. The enzymatic properties of the recombinant enzyme were investigated and the kinetic parameters (Km, kcat) for a number of substrates were determined. The kinetic parameters of selected substrates were determined at various pH and the pH- and temperature-dependence profiles were analyzed. WA gene successfully cloned into E. coli BL21 (DE3) showed high asparaginase activity with a specific activity of 17.3Β IU/mg protein

    Two Genetic Determinants Acquired Late in Mus Evolution Regulate the Inclusion of Exon 5, which Alters Mouse APOBEC3 Translation Efficiency

    Get PDF
    Mouse apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like editing complex 3 (mA3), an intracellular antiviral factor, has 2 allelic variations that are linked with different susceptibilities to beta- and gammaretrovirus infections among various mouse strains. In virus-resistant C57BL/6 (B6) mice, mA3 transcripts are more abundant than those in susceptible BALB/c mice both in the spleen and bone marrow. These strains of mice also express mA3 transcripts with different splicing patterns: B6 mice preferentially express exon 5-deficient (Ξ”5) mA3 mRNA, while BALB/c mice produce exon 5-containing full-length mA3 mRNA as the major transcript. Although the protein product of the Ξ”5 mRNA exerts stronger antiretroviral activities than the full-length protein, how exon 5 affects mA3 antiviral activity, as well as the genetic mechanisms regulating exon 5 inclusion into the mA3 transcripts, remains largely uncharacterized. Here we show that mA3 exon 5 is indeed a functional element that influences protein synthesis at a post-transcriptional level. We further employed in vitro splicing assays using genomic DNA clones to identify two critical polymorphisms affecting the inclusion of exon 5 into mA3 transcripts: the number of TCCT repeats upstream of exon 5 and the single nucleotide polymorphism within exon 5 located 12 bases upstream of the exon 5/intron 5 boundary. Distribution of the above polymorphisms among different Mus species indicates that the inclusion of exon 5 into mA3 mRNA is a relatively recent event in the evolution of mice. The widespread geographic distribution of this exon 5-including genetic variant suggests that in some Mus populations the cost of maintaining an effective but mutagenic enzyme may outweigh its antiviral function

    Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes

    Get PDF
    Abstract Background Upstream open reading frames (uORFs) can mediate translational control over the largest, or major ORF (mORF) in response to starvation, polyamine concentrations, and sucrose concentrations. One plant uORF with conserved peptide sequences has been shown to exert this control in an amino acid sequence-dependent manner but generally it is not clear what kinds of genes are regulated, or how extensively this mechanism is invoked in a given genome. Results By comparing full-length cDNA sequences from Arabidopsis and rice we identified 26 distinct homology groups of conserved peptide uORFs, only three of which have been reported previously. Pairwise Ka/Ks analysis showed that purifying selection had acted on nearly all conserved peptide uORFs and their associated mORFs. Functions of predicted mORF proteins could be inferred for 16 homology groups and many of these proteins appear to have a regulatory function, including 6 transcription factors, 5 signal transduction factors, 3 developmental signal molecules, a homolog of translation initiation factor eIF5, and a RING finger protein. Transcription factors are clearly overrepresented in this data set when compared to the frequency calculated for the entire genome (p = 1.2 Γ— 10-7). Duplicate gene pairs arising from a whole genome duplication (ohnologs) with a conserved uORF are much more likely to have been retained in Arabidopsis (Arabidopsis thaliana) than are ohnologs of other genes (39% vs 14% of ancestral genes, p = 5 Γ— 10-3). Two uORF groups were found in animals, indicating an ancient origin of these putative regulatory elements. Conclusion Conservation of uORF amino acid sequence, association with homologous mORFs over long evolutionary time periods, preferential retention after whole genome duplications, and preferential association with mORFs coding for transcription factors suggest that the conserved peptide uORFs identified in this study are strong candidates for translational controllers of regulatory genes.</p

    The devil is in the details: trends in avoidable hospitalization rates by geography in British Columbia, 1990–2000

    Get PDF
    BACKGROUND: Researchers and policy makers have focussed on the development of indicators to help monitor the success of regionalization, primary care reform and other health sector restructuring initiatives. Certain indicators are useful in examining issues of equity in service provision, especially among older populations, regardless of where they live. AHRs are used as an indicator of primary care system efficiency and thus reveal information about access to general practitioners. The purpose of this paper is to examine trends in avoidable hospitalization rates (AHRs) during a period of time characterized by several waves of health sector restructuring and regionalization in British Columbia. AHRs are examined in relation to non-avoidable and total hospitalization rates as well as by urban and rural geography across the province. METHODS: Analyses draw on linked administrative health data from the province of British Columbia for 1990 through 2000 for the population aged 50 and over. Joinpoint regression analyses and t-tests are used to detect and describe trends in the data. RESULTS: Generally speaking, non-avoidable hospitalizations constitute the vast majority of hospitalizations in a given year (i.e. around 95%) with AHRs constituting the remaining 5% of hospitalizations. Comparing rural areas and urban areas reveals that standardized rates of avoidable, non-avoidable and total hospitalizations are consistently higher in rural areas. Joinpoint regression results show significantly decreasing trends overall; lines are parallel in the case of avoidable hospitalizations, and lines are diverging for non-avoidable and total hospitalizations, with the gap between rural and urban areas being wider at the end of the time interval than at the beginning. CONCLUSION: These data suggest that access to effective primary care in rural communities remains problematic in BC given that rural areas did not make any gains in AHRs relative to urban areas under recent health sector restructuring initiatives. It remains important to continue to monitor the discrepancy between them as a reflection of inequity in service provision. In addition, it is important to consider alternative explanations for the observed trends paying particular attention to the needs of rural and urban populations and the factors influencing local service provision

    An Upstream Open Reading Frame Controls Translation of var2csa, a Gene Implicated in Placental Malaria

    Get PDF
    Malaria, caused by the parasite Plasmodium falciparum, is responsible for substantial morbidity, mortality and economic losses in tropical regions of the world. Pregnant women are exceptionally vulnerable to severe consequences of the infection, due to the specific adhesion of parasite-infected erythrocytes in the placenta. This adhesion is mediated by a unique variant of PfEMP1, a parasite encoded, hyper-variable antigen placed on the surface of infected cells. This variant, called VAR2CSA, binds to chondroitin sulfate A on syncytiotrophoblasts in the intervillous space of placentas. VAR2CSA appears to only be expressed in the presence of a placenta, suggesting that its expression is actively repressed in men, children or non-pregnant women; however, the mechanism of repression is not understood. Using cultured parasite lines and reporter gene constructs, we show that the gene encoding VAR2CSA contains a small upstream open reading frame that acts to repress translation of the resulting mRNA, revealing a novel form of gene regulation in malaria parasites. The mechanism underlying this translational repression is reversible, allowing high levels of protein translation upon selection, thus potentially enabling parasites to upregulate expression of this variant antigen in the presence of the appropriate host tissue

    Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community.</p> <p>Results</p> <p>Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families <it>Astroviridae</it>, <it>Reoviridae</it>, <it>Rhabdoviridae </it>and <it>Coronaviridae</it>, respectively).</p

    Sub-Telomeric core X and Y' Elements in S.cerevisiae Suppress Extreme Variations in Gene Silencing

    Get PDF
    Telomere Position Effect (TPE) is governed by strong repression signals emitted by telomeres via the Sir2/3/4 Histone Deacetylase complex. These signals are then relayed by weak proto-silencers residing in the subtelomeric core X and Y' elements. Subtelomeres also contain Sub-Telomeric Anti-silencing Regions (STARs). In this study we have prepared telomeres built of different combinations of core X, Y' and STARs and have analyzed them in strains lacking Histone-Acetyltransferase genes as well as in cdc6-1 and Ξ”rif1 strains. We show that core X and Y' dramatically reduce both positive and negative variations in TPE, that are caused by these mutations. We also show that the deletion of Histone-Acetyltransferase genes reduce the silencing activity of an ACS proto-silencer, but also reduce the anti-silencing activity of a STAR. We postulate that core X and Y' act as epigenetic β€œcushioning” cis-elements
    • …
    corecore