118 research outputs found
Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals.
BackgroundThe SCID-hu Thy/Liv mouse model of HIV-1 infection is a useful platform for the preclinical evaluation of antiviral efficacy in vivo. We performed this study to validate the model with representatives of all four classes of licensed antiretrovirals.Methodology/principal findingsEndpoint analyses for quantification of Thy/Liv implant viral load included ELISA for cell-associated p24, branched DNA assay for HIV-1 RNA, and detection of infected thymocytes by intracellular staining for Gag-p24. Antiviral protection from HIV-1-mediated thymocyte depletion was assessed by multicolor flow cytometric analysis of thymocyte subpopulations based on surface expression of CD3, CD4, and CD8. These mice can be productively infected with molecular clones of HIV-1 (e.g., the X4 clone NL4-3) as well as with primary R5 and R5X4 isolates. To determine whether results in this model are concordant with those found in humans, we performed direct comparisons of two drugs in the same class, each of which has known potency and dosing levels in humans. Here we show that second-generation antiretrovirals were, as expected, more potent than their first-generation predecessors: emtricitabine was more potent than lamivudine, efavirenz was more potent than nevirapine, and atazanavir was more potent than indinavir. After interspecies pharmacodynamic scaling, the dose ranges found to inhibit viral replication in the SCID-hu Thy/Liv mouse were similar to those used in humans. Moreover, HIV-1 replication in these mice was genetically stable; treatment of the mice with lamivudine did not result in the M184V substitution in reverse transcriptase, and the multidrug-resistant NY index case HIV-1 retained its drug-resistance substitutions.ConclusionGiven the fidelity of such comparisons, we conclude that this highly reproducible mouse model is likely to predict clinical antiviral efficacy in humans
Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations
Disease progression in multiple sclerosis occurs within the interface of glial activation and gliosis. This study aimed to investigate the relationship between biomarkers of different glial cell responses: (i) to disease dynamics and the clinical subtypes of multiple sclerosis; (ii) to disability; and (iii) to cross‐validate these findings in a post‐mortem study. To address the first goal, 51 patients with multiple sclerosis [20 relapsing remitting (RR), 21 secondary progressive (SP) and 10 primary progressive (PP)] and 51 neurological control patients were included. Disability was assessed using the ambulation index (AI), the Expanded Disability Status Scale score (EDSS) and the 9‐hole PEG test (9HPT). Patients underwent lumbar puncture within 7 days of clinical assessment. Post‐mortem brain tissue (12 multiple sclerosis and eight control patients) was classified histologically and adjacent sites were homogenized for protein analysis. S100B, ferritin and glial‐fibrillary acidic protein (GFAP) were quantified in CSF and brain‐tissue homogenate by ELISA (enzyme‐linked immunosorbent assay) techniques developed in‐house. There was a significant trend for increasing S100B levels from PP to SP to RR multiple sclerosis (P 6.5) had significantly higher CSF GFAP levels than less disabled multiple sclerosis or control patients (P < 0.01 and P < 0.001, respectively). There was a correlation between GFAP levels and ambulation in SP multiple sclerosis (r = 0.57, P < 0.01), and between S100B level and the 9HPT in PP multiple sclerosis patients (r = –0.85, P < 0.01). The post‐mortem study showed significantly higher S100B levels in the acute than in the subacute plaques (P < 0.01), whilst ferritin levels were elevated in all multiple sclerosis lesion stages. Both GFAP and S100B levels were significantly higher in the cortex of multiple sclerosis than in control brain homogenate (P < 0.001 and P < 0.05, respectively). We found that S100B is a good marker for the relapsing phase of the disease (confirmed by post‐mortem observation) as opposed to ferritin, which is elevated throughout the entire course. GFAP correlated with disability scales and may therefore be a marker for irreversible damage. The results of this study have broad implications for finding new and sensitive outcome measures for treatment trials that aim to delay the development of disability. They may also be considered in future classifications of multiple sclerosis patients
An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data
Citation: Shi, Z. Z., Chapes, S. K., Ben-Arieh, D., & Wu, C. H. (2016). An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data. Plos One, 11(8), 39. doi:10.1371/journal.pone.0161131We present an agent-based model (ABM) to simulate a hepatic inflammatory response (HIR) in a mouse infected by Salmonella that sometimes progressed to problematic proportions, known as "sepsis". Based on over 200 published studies, this ABM describes interactions among 21 cells or cytokines and incorporates 226 experimental data sets and/or data estimates from those reports to simulate a mouse HIR in silico. Our simulated results reproduced dynamic patterns of HIR reported in the literature. As shown in vivo, our model also demonstrated that sepsis was highly related to the initial Salmonella dose and the presence of components of the adaptive immune system. We determined that high mobility group box-1, C-reactive protein, and the interleukin-10: tumor necrosis factor-a ratio, and CD4+ T cell: CD8+ T cell ratio, all recognized as biomarkers during HIR, significantly correlated with outcomes of HIR. During therapy-directed silico simulations, our results demonstrated that anti-agent intervention impacted the survival rates of septic individuals in a time-dependent manner. By specifying the infected species, source of infection, and site of infection, this ABM enabled us to reproduce the kinetics of several essential indicators during a HIR, observe distinct dynamic patterns that are manifested during HIR, and allowed us to test proposed therapy-directed treatments. Although limitation still exists, this ABM is a step forward because it links underlying biological processes to computational simulation and was validated through a series of comparisons between the simulated results and experimental studies
Summary of cerebrospinal fluid routine parameters in neurodegenerative diseases
In neurodegenerative diseases, cerebrospinal fluid analysis (CSF) is predominantly performed to exclude inflammatory diseases and to perform a risk assessment in dementive disorders by measurement of tau proteins and amyloid beta peptides. However, large scale data on basic findings of CSF routine parameters are generally lacking. The objective of the study was to define a normal reference spectrum of routine CSF parameters in neurodegenerative diseases. Routine CSF parameters (white cell count, lactate and albumin concentrations, CSF/serum quotients of albumin (Qalb), IgG, IgA, IgM, and oligoclonal IgG bands (OCB)) were retrospectively analyzed in an academic research setting. A total of 765 patients (Alzheimer’s disease (AD), Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), vascular dementia (VD), frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), multisystem atrophy (MSA), motor neuron diseases (MND), spinocerebellar ataxia (SCA), Huntington’s disease (HD)) and non-demented control groups including a group of patients with muscular disorders (MD). The main outcome measures included statistical analyses of routine CSF parameters. Mildly elevated Qalb were found in a small percentage of nearly all subgroups and in a higher proportion of patients with PSP, MSA, VD, PDD, and MND. With the exception of 1 MND patient, no intrathecal Ig synthesis was observed. Isolated OCBs in CSF were sometimes found in patients with neurodegenerative diseases without elevated cell counts; lactate levels were always normal. A slightly elevated Qalb was observed in a subgroup of patients with neurodegenerative diseases and does not exclude the diagnosis. Extensive elevation of routine parameters is not characteristic and should encourage a re-evaluation of the clinical diagnosis
cDNA Sequence and Fab Crystal Structure of HL4E10, a Hamster IgG Lambda Light Chain Antibody Stimulatory for γδ T Cells
Hamsters are widely used to generate monoclonal antibodies against mouse, rat, and human antigens, but sequence and structural information for hamster immunoglobulins is sparse. To our knowledge, only three hamster IgG sequences have been published, all of which use kappa light chains, and no three-dimensional structure of a hamster antibody has been reported. We generated antibody HL4E10 as a probe to identify novel costimulatory molecules on the surface of γδ T cells which lack the traditional αβ T cell co-receptors CD4, CD8, and the costimulatory molecule CD28. HL4E10 binding to γδ T cell, surface-expressed, Junctional Adhesion Molecule-Like (JAML) protein leads to potent costimulation via activation of MAP kinase pathways and cytokine production, resulting in cell proliferation. The cDNA sequence of HL4E10 is the first example of a hamster lambda light chain and only the second known complete hamster heavy chain sequence. The crystal structure of the HL4E10 Fab at 2.95 Å resolution reveals a rigid combining site with pockets faceted by solvent-exposed tyrosine residues, which are structurally optimized for JAML binding. The characterization of HL4E10 thus comprises a valuable addition to the spartan database of hamster immunoglobulin genes and structures. As the HL4E10 antibody is uniquely costimulatory for γδ T cells, humanized versions thereof may be of clinical relevance in treating γδ T cell dysfunction-associated diseases, such as chronic non-healing wounds and cancer
Strategies to Target Tumor Immunosuppression
The tumor microenvironment is currently in the spotlight of cancer immunology research as a key factor impacting tumor development and progression. While antigen-specific immune responses play a crucial role in tumor rejection, the tumor hampers these immune responses by creating an immunosuppressive microenvironment. Recently, major progress has been achieved in the field of cancer immunotherapy, and several groundbreaking clinical trials demonstrated the potency of such therapeutic interventions in patients. Yet, the responses greatly vary among individuals. This calls for the rational design of more efficacious cancer immunotherapeutic interventions that take into consideration the “immune signature” of the tumor. Multimodality treatment regimens that aim to enhance intratumoral homing and activation of antigen-specific immune effector cells, while simultaneously targeting tumor immunosuppression, are pivotal for potent antitumor immunity
Is autoimmunity the Achilles' heel of cancer immunotherapy?
The emergence of immuno-oncology as the first broadly successful strategy for metastatic cancer will require clinicians to integrate this new pillar of medicine with chemotherapy, radiation, and targeted small-molecule compounds. Of equal importance is gaining an understanding of the limitations and toxicities of immunotherapy. Immunotherapy was initially perceived to be a relatively less toxic approach to cancer treatment than other available therapies-and surely it is, when compared to those. However, as the use of immunotherapy becomes more common, especially as first- and second-line treatments, immunotoxicity and autoimmunity are emerging as the Achilles' heel of immunotherapy. In this Perspective, we discuss evidence that the occurrence of immunotoxicity bodes well for the patient, and describe mechanisms that might be related to the induction of autoimmunity. We then explore approaches to limit immunotoxicity, and discuss the future directions of research and reporting that are needed to diminish it
Humoral and cellular immune responses after influenza vaccination in patients with chronic fatigue syndrome
Contains fulltext :
108175.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Chronic fatigue syndrome (CFS) is a clinical condition characterized by severe and disabling fatigue that is medically unexplained and lasts longer than 6 months. Although it is possible to effectively treat CFS, the nature of the underlying physiology remains unclear. Various studies have sought evidence for an underlying disturbance in immunity. The aim of this study was to compare the humoral and cellular immune responses upon influenza vaccination in CFS patients and healthy controls. RESULTS: Identical antibody titers were observed in CFS patients and healthy controls. Patients and controls demonstrated similar seroprotection rates against all three virus-strains of the influenza vaccine, both pre- and post-vaccination. Functional T cell reactivity was observed in both CFS patients and healthy controls. CFS patients showed a non-significant, numerically lower cellular proliferation at baseline compared to controls. Vaccination induced a significant increase in cellular proliferation in CFS patients, but not in healthy controls. Cytokine production and the number of regulatory T cells were comparable in patients and controls. CONCLUSIONS: The humoral and cellular immune responses upon influenza vaccination were comparable in CFS patients and healthy controls. Putative aberrations in immune responses in CFS patients were not evident for immunity towards influenza. Standard seasonal influenza vaccination is thus justified and, when indicated, should be recommended for patients suffering from CFS
Proprioceptive Modulation of Hip Flexor Activity During the Swing Phase of Locomotion in Decerebrate Cats
Diagnosis and management of connective tissue disease-associated interstitial lung disease in Australia and New Zealand: A position statement from the Thoracic Society of Australia and New Zealand.
Pulmonary complications in CTD are common and can involve the interstitium, airways, pleura and pulmonary vasculature. ILD can occur in all CTD (CTD-ILD), and may vary from limited, non-progressive lung involvement, to fulminant, life-threatening disease. Given the potential for major adverse outcomes in CTD-ILD, accurate diagnosis, assessment and careful consideration of therapeutic intervention are a priority. Limited data are available to guide management decisions in CTD-ILD. Autoimmune-mediated pulmonary inflammation is considered a key pathobiological pathway in these disorders, and immunosuppressive therapy is generally regarded the cornerstone of treatment for severe and/or progressive CTD-ILD. However, the natural history of CTD-ILD in individual patients can be difficult to predict, and deciding who to treat, when and with what agent can be challenging. Establishing realistic therapeutic goals from both the patient and clinician perspective requires considerable expertise. The document aims to provide a framework for clinicians to aid in the assessment and management of ILD in the major CTD. A suggested approach to diagnosis and monitoring of CTD-ILD and, where available, evidence-based, disease-specific approaches to treatment have been provided
- …
