283 research outputs found

    In vitro production of bovine embryos derived from individual donors in the Corral® dish

    Get PDF
    Background: Since the identity of the embryo is of outmost importance during commercial in vitro embryo production, bovine oocytes and embryos have to be cultured strictly per donor. Due to the rather low yield of oocytes collected after ovum pick-up (OPU) per individual cow, oocyte maturation and embryo culture take place in small groups, which is often associated with inferior embryo development. The objective of this study was to improve embryonic development in small donor groups by using the Corral (R) dish. This commercial dish is designed for human embryo production. It contains two central wells that are divided into quadrants by a semi-permeable wall. In human embryo culture, one embryo is placed per quadrant, allowing individual follow-up while embryos are exposed to a common medium. In our study, small groups of oocytes and subsequently embryos of different bovine donors were placed in the Corral (R) dish, each donor group in a separate quadrant. Results: In two experiments, the Corral (R) dish was evaluated during in vitro maturation (IVM) and/or in vitro culture (IVC) by grouping oocytes and embryos of individual bovine donors per quadrant. At day 7, a significantly higher blastocyst rate was noted in the Corral (R) dish used during IVM and IVC than when only used during IVM (12.9% +/- 2.10 versus 22.8% +/- 2.67) (P < 0.05). However, no significant differences in blastocyst yield were observed anymore between treatment groups at day 8 post insemination. Conclusions: In the present study, the Corral (R) dish was used for in vitro embryo production (IVP) in cattle; allowing to allocate oocytes and/or embryos per donor. As fresh embryo transfers on day 7 have higher pregnancy outcomes, the Corral (R) dish offers an added value for commercial OPU/IVP, since a higher blastocyst development at day 7 is obtained when the Corral (R) dish is used during IVM and IVC

    Application of Magnetic Nanoparticles in Pharmaceutical Sciences

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com KEY WORDS magnetic beads. magnetic bioseparation. magnetic nanoparticle

    Macrophages Are Required for Dendritic Cell Uptake of Respiratory Syncytial Virus from an Infected Epithelium

    Get PDF
    We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells

    G-Protein Coupled Receptor Signaling Architecture of Mammalian Immune Cells

    Get PDF
    A series of recent studies on large-scale networks of signaling and metabolic systems revealed that a certain network structure often called “bow-tie network” are observed. In signaling systems, bow-tie network takes a form with diverse and redundant inputs and outputs connected via a small numbers of core molecules. While arguments have been made that such network architecture enhances robustness and evolvability of biological systems, its functional role at a cellular level remains obscure. A hypothesis was proposed that such a network function as a stimuli-reaction classifier where dynamics of core molecules dictate downstream transcriptional activities, hence physiological responses against stimuli. In this study, we examined whether such hypothesis can be verified using experimental data from Alliance for Cellular Signaling (AfCS) that comprehensively measured GPCR related ligands response for B-cell and macrophage. In a GPCR signaling system, cAMP and Ca2+ act as core molecules. Stimuli-response for 32 ligands to B-Cells and 23 ligands to macrophages has been measured. We found that ligands with correlated changes of cAMP and Ca2+ tend to cluster closely together within the hyperspaces of both cell types and they induced genes involved in the same cellular processes. It was found that ligands inducing cAMP synthesis activate genes involved in cell growth and proliferation; cAMP and Ca2+ molecules that increased together form a feedback loop and induce immune cells to migrate and adhere together. In contrast, ligands without a core molecules response are scattered throughout the hyperspace and do not share clusters. G-protein coupling receptors together with immune response specific receptors were found in cAMP and Ca2+ activated clusters. Analyses have been done on the original software applicable for discovering ‘bow-tie’ network architectures within the complex network of intracellular signaling where ab initio clustering has been implemented as well. Groups of potential transcription factors for each specific group of genes were found to be partly conserved across B-Cell and macrophage. A series of findings support the hypothesis

    Managing changes initiated by industrial big data technologies : a technochange management model

    Get PDF
    With the adoption of Internet of Things and advanced data analytical technologies in manufacturing firms, the industrial sector has launched an evolutionary journey toward the 4th industrial revolution, or so called Industry 4.0. Industrial big data is a core component to realize the vision of Industry 4.0. However, the implementation and usage of industrial big data tools in manufacturing firms will not merely be a technical endeavor, but can also lead to a thorough management reform. By means of a comprehensive review of literature related to Industry 4.0, smart manufacturing, industrial big data, information systems (IS) and technochange management, this paper aims to analyze potential changes triggered by the application of industrial big data in manufacturing firms, from technological, individual and organizational perspectives. Furthermore, in order to drive these changes more effectively and eliminate potential resistance, a conceptual technochange management model was developed and proposed. Drawn upon theories reported in literature of IS technochange management, this model proposed four types of interventions that can be used to copy with changes initiated by industrial big data technologies, including human process intervention, techno-structural intervention, human resources management intervention and strategic intervention. This model will be of interests and value to practitioners and researchers concerned with business reforms triggered by Industry 4.0 in general and by industrial big data technologies in particular

    Differential gene expression in human granulosa cells from recombinant FSH versus human menopausal gonadotropin ovarian stimulation protocols

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study was designed to test the hypothesis that granulosa cell (GC) gene expression response differs between recombinant FSH and human menopausal gonadotropin (hMG) stimulation regimens.</p> <p>Methods</p> <p>Females < 35 years-old undergoing IVF for tubal or male factor infertility were prospectively randomized to one of two stimulation protocols, GnRH agonist long protocol plus individualized dosages of (1) recombinant (r)FSH (Gonal-F) or (2) purified human menopausal gonadotropin (hMG; Menopur). Oocytes were retrieved 35 h post-hCG, and GC were collected. Total RNA was extracted from each GC sample, biotinylated cRNA was synthesized, and each sample was run on Human Genome Bioarrays (Applied Microarrays). Unnamed genes and genes with <2-fold difference in expression were excluded.</p> <p>Results</p> <p>After exclusions, 1736 genes exhibited differential expression between groups. Over 400 were categorized as signal transduction genes, ~180 as transcriptional regulators, and ~175 as enzymes/metabolic genes. Expression of selected genes was confirmed by RT-PCR. Differentially expressed genes included A kinase anchor protein 11 (AKAP11), bone morphogenetic protein receptor II (BMPR2), epidermal growth factor (EGF), insulin-like growth factor binding protein (IGFBP)-4, IGFBP-5, and hypoxia-inducible factor (HIF)-1 alpha.</p> <p>Conclusions</p> <p>Results suggest that major differences exist in the mechanism by which pure FSH alone versus FSH/LH regulate gene expression in preovulatory GC that could impact oocyte maturity and developmental competence.</p

    Codon usage in vertebrates is associated with a low risk of acquiring nonsense mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Codon usage in genomes is biased towards specific subsets of codons. Codon usage bias affects translational speed and accuracy, and it is associated with the tRNA levels and the GC content of the genome. Spontaneous mutations drive genomes to a low GC content. Active cellular processes are needed to maintain a high GC content, which influences the codon usage of a species. Loss-of-function mutations, such as nonsense mutations, are the molecular basis of many recessive alleles, which can greatly affect the genome of an organism and are the cause of many genetic diseases in humans.</p> <p>Methods</p> <p>We developed an event based model to calculate the risk of acquiring nonsense mutations in coding sequences. Complete coding sequences and genomes of 40 eukaryotes were analyzed for GC and CpG content, codon usage, and the associated risk of acquiring nonsense mutations. We included one species per genus for all eukaryotes with available reference sequence.</p> <p>Results</p> <p>We discovered that the codon usage bias detected in genomes of high GC content decreases the risk of acquiring nonsense mutations (Pearson's <it>r </it>= -0.95; <it>P </it>< 0.0001). In the genomes of all examined vertebrates, including humans, this risk was lower than expected (0.93 ± 0.02; mean ± SD) and lower than the risk in genomes of non-vertebrates (1.02 ± 0.13; <it>P </it>= 0.019).</p> <p>Conclusions</p> <p>While the maintenance of a high GC content is energetically costly, it is associated with a codon usage bias harboring a low risk of acquiring nonsense mutations. The reduced exposure to this risk may contribute to the fitness of vertebrates.</p

    Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bi-directional communication between the oocyte and its companion cumulus cells (CCs) is crucial for development and functions of both cell types. Transcripts that are exclusively expressed either in oocytes or CCs and molecular mechanisms affected due to removal of the communication axis between the two cell types is not investigated at a larger scale. The main objectives of this study were: 1. To identify transcripts exclusively expressed either in oocyte or CCs and 2. To identify those which are differentially expressed when the oocyte is cultured with or without its companion CCs and vice versa.</p> <p>Results</p> <p>We analyzed transcriptome profile of different oocyte and CC samples using Affymetrix GeneChip Bovine Genome array containing 23000 transcripts. Out of 13162 genes detected in germinal vesicle (GV) oocytes and their companion CCs, 1516 and 2727 are exclusively expressed in oocytes and CCs, respectively, while 8919 are expressed in both. Similarly, of 13602 genes detected in metaphase II (MII) oocytes and CCs, 1423 and 3100 are exclusively expressed in oocytes and CCs, respectively, while 9079 are expressed in both. A total of 265 transcripts are differentially expressed between oocytes cultured with (OO + CCs) and without (OO - CCs) CCs, of which 217 and 48 are over expressed in the former and the later groups, respectively. Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs + OO) or without (CCs - OO) their enclosed oocytes. Of these, 320 and 246 are over expressed in CCs + OO and CCs - OO, respectively.</p> <p>While oocyte specific transcripts include those involved in transcription (<it>IRF6, POU5F1, MYF5, MED18</it>), translation (<it>EIF2AK1, EIF4ENIF1</it>) and CCs specific ones include those involved in carbohydrate metabolism (<it>HYAL1, PFKL, PYGL, MPI</it>), protein metabolic processes (<it>IHH, APOA1, PLOD1</it>), steroid biosynthetic process (<it>APOA1, CYP11A1, HSD3B1, HSD3B7</it>). Similarly, while transcripts over expressed in OO + CCs are involved in carbohydrate metabolism (<it>ACO1, 2</it>), molecular transport (<it>GAPDH, GFPT1</it>) and nucleic acid metabolism (<it>CBS, NOS2</it>), those over expressed in CCs + OO are involved in cellular growth and proliferation (<it>FOS, GADD45A</it>), cell cycle (<it>HAS2, VEGFA</it>), cellular development (<it>AMD1, AURKA, DPP4</it>) and gene expression (<it>FOSB, TGFB2</it>).</p> <p>Conclusion</p> <p>In conclusion, this study has generated large scale gene expression data from different oocyte and CCs samples that would provide insights into gene functions and interactions within and across different pathways that are involved in the maturation of bovine oocytes. Moreover, the presence or absence of oocyte and CC factors during bovine oocyte maturation can have a profound effect on transcript abundance of each cell types, thereby showing the prevailing molecular cross-talk between oocytes and their corresponding CCs.</p

    Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles

    Get PDF
    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response
    corecore