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Abstract

We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells
[MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells
act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the
possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV
from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway
epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the
basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which
macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red
fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection
of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became
infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located
beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model.
However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs
occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are
located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from
epithelial cells to basal dendritic cells.
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Introduction

The respiratory syncytial virus [RSV] causes annual epidemics

of respiratory disease affecting all age groups. Studies suggest that

more than 60% of infants and 30% of the whole population

experience a clinical illness due to RSV each winter [1]. The

greatest impact of the virus is noted in infants with some 0.5–1% of

all infants being admitted to hospital during the first winter after

their birth [2,3]. It is estimated that each year RSV is responsible

for some 3.4 million hospitalizations and as many as 199,000

deaths worldwide [4]. It remains unclear why the virus is so

successful and why it particularly affects very young infants at a

time when passively acquired maternal antibodies are still at

relatively high levels. Similarly the reason for the characteristic

pattern of annual epidemics and the almost complete disappear-

ance of the virus in the summer remains to be explained [5,6]. The

virus does not undergo significant antigenic shifts, as is the case for

influenza, nor are there multiple circulating strains, as is the case

for rhinovirus [7]. An alternative explanation for its success is that

the virus is able to prevent the development of effective long-term

memory responses thus permitting recurrent infections throughout

life [8]. This would potentially contribute to poor herd immunity

within the population and low levels of neutralizing antibodies

amongst a significant proportion of pregnant mothers, placing a

large proportion of infants at risk of infection during their first

winter [9].

Key players in the development of effective immune responses

to respiratory pathogens are the sub-epithelial dendritic cells

[10,11]. Previous work from our group has shown that RSV can

infect monocyte derived dendritic cells (MoDCs) [12,13] while a

study involving infants hospitalized with RSV infections confirmed

that dendritic cells numbers are significantly increased during and

post infection and that HLA-DR+ve cells with the morphology of

DCs contained RSV protein [14]. More recently we have shown

that RSV is able to remain latent for prolonged periods within

MoDC cells in vitro [15]. In these experiment we showed that re-

activation of RSV replication within the MoDCs can be stimulated

by exposing them to nitric oxide (NO) or a NO donor [16]. These

studies would suggest that it is possible that RSV infection of DCs

in vivo provides the virus with a niche in which it may remain

dormant between epidemics.

In order to explore the possibility that virus may be passed

between infected epithelium to sub-epithelial DCs and conversely

from infected sub-epithelial DCs to an overlying differentiated

epithelium we established dual in-vitro models. This involved

establishing primary differentiated bronchial epithelial cell (pBEC)
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cultures on transwells insert and adding differentiated MoDC to

the basal surface of the transwell. Further experiments were

subsequently undertaken in which macrophages were added to the

apical surface of the epithelium after infection of the epithelium in

order to determine whether macrophages might play a role in the

infection of MoDC. RSV has been shown to infect and replicate

within macrophages [16–18]. Moreover, macrophages have been

shown, in triple co-culture experiments, to play a direct role in the

uptake of nanoparticles by sub-epithelial dendritic cells through

direct cell to cell transfer of the particles [19–21].

Methods

These in vitro studies were approved by the South Sheffield

research Ethics Committee [08/H1310/92] and written informed

consent was obtained from the healthy volunteers who donated

blood from which the cells were prepared.

Primary Bronchial Epithelial Cell (pBEC) Cultures
Cryopreserved human bronchial epithelial cells (HBEpC;

Promocell, Heidelberg Germany) were cultured in Airway

Epithelial Cell Growth Medium. (AEGM; Promocell, Heidelberg,

Germany). Cells were obtained from two individual donors. They

were seeded at 106103 cells/cm2 in T25 flasks and grown to

confluency. Cells were subcultured with Trypsin-EDTA and

aliquoted into new T25 or T75 flasks at 10–156103 cells per cm2.

Cultures were received at Passage 2 and were used for experiments

up to passages 4 or 5. At confluency, HBEpC were subcultured

with Trypsin-EDTA and re-suspended in Air Liquid Interface

(ALI) Media (Promocell, Heidelberg, Germany). Cultures were

seeded at 0.86106 cells/ml. on the apical surface of 6.5 mm

transwell ThinCerts with 3 mm pore size (FALCON; Becton

Dickinson, NJ, USA) and placed in 24 well flat-bottomed plates

(Corning Costar, High Wycombe, UK) with 0.75 mls of ALI

media in the basal and upper compartments. Media in both

compartments was changed daily until cell confluency was

reached. Media was removed at confluency and cells were left

exposed to air, to generate an ALI. The apical surface was washed

daily with 200 mls of sterile PBS and basal media every 48 hours

until the cells underwent mucociliary differentiation. This process

took between 14 and 21 days. The differentiation of the cells was

assessed by, immunofluorescence (IF) using staining for the goblet

cell marker, MUC5AC and by western blotting for BPIFB1

(LPLUNC1), a protein that is only produced by fully differentiate

ALI cell cultures [22,23]. Cells were then ready to use for co-

culture experiments and these were started when the cells had

been at ALI for 21 days.

Monocyte Isolation and Culture
Peripheral blood mononuclear cells (PBMCs) were isolated from

freshly drawn venous blood using Histopaque gradient centrifu-

gation. In brief, blood was obtained from healthy adult volunteers

and anti-coagulated with heparin (Multiparin 1000 u/ml Heparin,

CP Pharmaceuticals Ltd Wrexham) at a concentration of 20 units/

ml of blood. The blood was diluted to 50% with Monocyte

isolation buffer (MIB), consisting of Endotoxin free PBS without

Calcium/Magnesium, 2% FCS, 0.002% EDTA and layered at 5:2

ratio on to Histopaque 1077 solution. (Sigma Chemical Co, Poole,

UK). The gradient was then centrifuged at 400 g for 40 minutes at

room temperature with no brake. The interphase of mononuclear

cells was removed and re-suspended in MIB to desired concen-

tration. The cell solution was centrifuged at 300 g for 10 minutes.

The supernatant was discarded and cells were re-suspended in

20 mls of MIB and counted using a haemocytometer.

Enrichment of the monocyte population was achieved by the

EASYSEP negative immunomagnetic selection method (STEM-

CELL Technology, Genoble, France). The PBMC cell solution

from above was centrifuged at 300 g for 10 minutes and

supernatant was discarded to remove the remaining histopaque

and plasma. The cell pellet was resuspended in MIB at a cell

density of 56107 cells/ml. EasySep Human Monocyte Negative

Figure 1. Schematic representation of dual and triple co-cultures. pBEC=primary bronchial epithelial cell culture, MoDC=monocyte derived
dendritic cells, MDM=monocyte derived macrophages.
doi:10.1371/journal.pone.0091855.g001

Table 1. Overview of experiments undertaken.

Experiment Description Cells primarily infected with RSV

1 Dual culture Mock

2 Dual culture pBEC

3 Dual culture MoDC

4 Triple culture pBEC

pBEC =primary bronchial epithelial cell culture, MoDC=monocyte derived dendritic cells.
doi:10.1371/journal.pone.0091855.t001

RSV Triple Co-Cultures
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Enrichment Cocktail was added at 50 ml/ml to the cell solution,

mixed well and incubated at 4uC for 10 minutes. EasySep

Magnetic microparticles were then added at 50 ml/ml, mixed well

and incubated at 4uC for 5 minutes.

The cell suspension was then placed in an EasySep magnet and

incubated for 2.5 minutes at room temperature. The remaining

cells were re-suspended in MIB and solution replaced in the

EasySep magnet for a further 2.5 minutes.

Figure 2. Confirmation of differentiation of the ALI cultures. A. Western blotting of apical cell washes were used to show induction of
SPLUNC1/BPIFA1 in primary cells by day 20 compared to day 0 of ALI culture. B. A 20 day ALI culture was stained for MUC5AC as outlined in the
methods section. The positive green staining shows the presence of goblet cells within the cell layer after differentiation.
doi:10.1371/journal.pone.0091855.g002

RSV Triple Co-Cultures
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Monocyte Derived Dendritic Cell (MoDC) Culture
MoDCs were isolated as previously described [12,13,15]. Briefly

an enriched monocyte suspension was centrifuged at 300 g for 10

minutes at room temperature and the cells were re-suspended at a

density of 16106 cells/ml in serum free X-Vivo-20 (BioWhittaker,

Wokingham, Berkshire, UK). The cell suspension was aliquoted at

0.5 mls per well into 24 well flat bottomed plates (Corning Costar,

High Wycombe, UK). Cells were supplemented with 40 ng/ml

GM-CSF (Biosource International, Paisley, UK) and 20 ng/ml IL-

4 (Biosource International, Paisley, UK) and were cultured at

37uC in a 5% CO2/air mix Sanyo humidified incubator for 5–7

days to allow for maturation to dendritic cells. Cells were

characterized by the use of surface markers specific for DCs

(CD83 CD86) and markers specific for co-presentation (CD40 and

HLA Class II). Cultures were given 50% fresh media containing

cytokines twice weekly. Half of the MoDCs were infected with red

fluorescent rr-RSV at 56105 pfu/ml (MOI of 0.5). All the cells

were cultured under standard conditions for another 5–7 days at

which point they were used in co-culture experiments.

Monocyte Derived Macrophage (MDMs) Culture
Enriched monocytes were centrifuged at 300 g for 10 minutes at

room temperature and cells re-suspended at a density of 16106

cells/ml in RPMI 1640 media containing L-glutamine and

NaHCO3 (Sigma, Poole, UK) supplemented with 10% FBS

(Gibco, Paisley, UK). The cell suspension was aliquoted at 0.5 mls

per well in 24 well flat-bottomed plates. All non-adherent cells

were removed on day one and cultures were given 50% fresh

Figure 3. Active RSV infection occurs in both directly and indirectly infected pBECs. Cell infections and FACS analysis were performed as
outlined in the methods section. Direct exposure means pBECs were directly infected with RSV, whereas indirect exposure means that the RSV
infected MoDCs were the source of the virus. The image shows a representative example of flow cytometry results for pBECs from a co-culture
experiment.
doi:10.1371/journal.pone.0091855.g003

RSV Triple Co-Cultures
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media twice weekly. Cells were cultured at 37uC in a 5% CO2/air

mix Sanyo humidified incubator for 14 days for differentiation to

MDMs using established protocols developed in our unit [24].

Virology
An A2 RSV virus carrying the gene for Red Fluorescent Protein

(RFP), designated rr-RSV was used in these experiments. This

virus, which generates RFP only during active replication, was

kindly obtained from Dr Mark Peebles (Nationwide Children’s

Hospital, Columbus). The preparation of virus has previously been

described [25].

For viral propagation, HeLa cells were grown to 80%

confluence in T75 flasks, the growth media was removed and

5 mls of a 1:2500 dilution of RSV was added. Following

incubation for 2 hours, with the media being redistributed by

tipping every 20 minutes, 10 mls of DMEM supplemented with

2% FCS, 2 mM L-Glutamine and 1% Penicillin and Streptomycin

was added. The cells were left for 2–3 days under normal culture

conditions until significant fluorescence was observed in the cells

and they were then harvested by scraping. Cells were broken up to

release intracellular virus by vigorous pipetting, passing through a

21 gauge needle a number of times and rapid freeze: thaw using

liquid nitrogen. Any intact cells were removed by centrifugation at

250 g for 5 minutes and the supernatant was snap-frozen in liquid

nitrogen and stored at280uC. In order to obtain purified virus the

preparation was centrifuged through a Vivaspin-20 ultra-filtration

tube (Vivaspin, Saertorius, Goettingen, Germany) to remove low

molecular weight contaminating protein as previously described

[26]. This simple method does not affect the infectivity of the virus.

The purified virus was snap-frozen in liquid nitrogen and stored at

280uC together with samples of filtrate which were used as a

control. Virus titre was determined by a standard plaque assay.

Generation of Transwell Co-cultures
For these experiments dual and triple trans-well co-cultures

were established. For dual co-cultures a pBEC was established on

a transwell insert and subsequently a MoDC culture was

established on the contralateral surface of the insert. For triple

cultures MDMs were subsequently added to the apical surface of

the pBEC following successful establishment of the duel co-culture.

This is represented schematically in Figure 1 and described in

more detail below.

This technique was based on a published method developed

using lung cell lines [19–21]. pBECs differentiated at the ALI were

used on the apical surface of the co-culture model. Epithelial cells

were differentiated on the apical surface of BD Falcon 24 well cell-

culture transwell inserts (surface area 0.3 cm2, pores of 3 microns,

BD Biosciences, Claix France) as described above.

When the cells were confluent the inserts were turned upside

down and placed in a well from a 6 well culture dish.

(Corning,NY, USA). A cell scraper was used to gently abrade

any epithelial cell material that may have grown through the

membrane. The membrane was washed once with RPMI 1640

medium. 0.5 mls of infected or uninfected MoDC cell suspension

(56105 cells) was added to the basolateral membrane of insets.

The culture dish was covered and cultured for 2 hours. Inserts

were then reverted and placed back in 24 well plates and 0.25 mls

of standard MoDC media was added to the bottom of the well.

For the triple co-cultures, 0.5 mls of MDM cell suspension

[approx. 16106 cells/ml] was added to the apical surface of the

pBECs. Cells were allowed to attach for 2 hours and non-adherent

cells were washed away with 0.5 mls of PBS.

Co cultures were infected with rr-RSV at 16106 pfu/ml (MOI

of 1). For experiments involving direct infection of the epithelium

the virus was added to the apical surface of the pBECs. The

infection was allowed to proceed for 2 hours, with gentle agitation

every 20 minutes and then the cells were washed with 0.5 mls of

PBS three times. For indirect infection the MoDCs were exposed

to virus for 2 hours prior to their addition to the basal surface of

the cell insert.

The experiments with the dual and triple co-culture are outlined

in Table 1. All the experiments were repeated 6 times with 3 sets of

each co-culture. Three different donors were used to provide

MoDCs and MDMs. In experiments involving both dendritic cells

and macrophages these cells were obtained from the same donor.

Figure 4. Collated fluorescence data from directly and indirect
exposure studies. Cell infections and FACS analysis were performed
as outlined in the methods section. The data represents 6 experiments
performed in pBECs with standard error of the mean shown by the error
bars.
doi:10.1371/journal.pone.0091855.g004

RSV Triple Co-Cultures
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Microscopy
Microscopy and photography was performed on live cells, using

a LEICA time phase microscope, just prior to preparation for cells

for Flow cytometry. IF localisation of MUC5AC was performed

on acetone/methanol fixed filters as previously described [23].

Westen Blotting
5 ml aliquots of apical washes from the ALI pBECs were

denatured, resolved on 12% SDS-PAGE gels and western blotted

using specific antibodies against human SPLUNC1/BPIFA1

(1:500 dilution)23. Detection was performed using ECL and x-

ray film (Amersham) following incubation with HRP conjugated

secondary antibody (1:2000 dilution).

Figure 5. Active RSV replication is seen in both directly and indirectly infected pBEC cultures. Cell infections and IF microscopy were
performed as outlined in the methods section. The images show active RSV replication (as indicated by red fluorescence) in pBEC images under
fluorescence microscopy at the indicated time alongside corresponding phase contrast images of the pBEC cultures.
doi:10.1371/journal.pone.0091855.g005

RSV Triple Co-Cultures
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Preparation of Cells for Flow Cytometry
pBEC. Cells on the apical surface of the transwells were

washed with 0.2 mls of PBS. 0.2 ml of trypsin was added to each

well and incubated at 37uC for 5 minutes or until the cells

dissociated. 0.3 ml of RPMI media was added to each well to

quench the trypsin reaction and the cells were placed in a 1 ml

ependorf tube. Cell dissociation was confirmed by light micros-

copy. Cells were spun at 2500 rpm for 5 minutes, the supernatant

was discarded and the cells were re-suspended in 0.5 mls of FACS

buffer (0.1% Bovine Serum Albumin, BSA, in PBS) and placed in

a FACS tube. The cells were spun at 2500 rpm for 5 mins, the

supernatant was discarded and the cells were finally re-suspended

in 0.4 ml FACS buffer. They were placed on ice, ready for flow

cytometry.

MoDCs. The transwells were turned upside down and cells

were dissociated from the basolateral surface by gentle scraping

with a cell scraper. 0.2 ml of PBS was placed on the basolateral

surface and cells were removed and prepared for flow cytometry as

above.

Flow cytometry was performed with a FACsCalibur machine, in

the University of Sheffield’s core research facility.

Statistical Analysis
The mock exposed cells acted as negative controls for all studies.

Intensity of fluorescence for each population was calculated using

Figure 6. Active RSV replication is seen in both direct and indirectly infected MoDCs. Cell infections and FACS analysis were performed as
outlined in the methods section. Direct exposure means MoDCs were directly infected with RSV, whereas indirect exposure means that the RSV
infected pBECs were the source of the virus. This is shown in an example of flow cytometry results of MoDCs on co-culture from a single experiment.
doi:10.1371/journal.pone.0091855.g006

RSV Triple Co-Cultures
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geometric mean and collated using FlowJo software. In these

studies increased red fluorescence is assumed to reflect an

increased proportion of RSV infected cells in the cultures. Data

was analysed using a one-way ANOVA statistical test using the

statistical program Prism.

Results

The pBECs cultured at the ALI were shown to produce markers

of differentiation including BPIFA1 by western blotting of apical

washes (Figure 2a) and MUC5AC shown by IF microscopy

(Figure 2b) thus confirming that the primary cells had effectively

differentiated into a mucociliary phenotype representative of

human airway epithelium.

Direct and Indirect Infection of Differentiated pBECs
Infection and replication of RSV was evident in the directly

exposed pBECs at 24 hours post inoculation as shown by robust

detection of red florescence. This was still present at 168 hours of

culture (Figure 3). The pBECs also became infected with RSV

following the addition of infected MODCs to the basal surface of

the transwell insert (Figure 3) though the intensity of staining

fluorescence was reduced. Quantitation of data from 6 individual

experiments confirmed that RSV readily infected the primary

epithelial cultures when virus was introduced directly onto the

apical surface and when exposed to MODCs introduced below the

insert. Compared with the control, mock infected, pBECs, there

was a significant increase in fluorescence in the directly exposed

pBECs at 24, 48 and 168 hours (Figure 4). For confirmation of this

observation we used IF microscopy and corresponding phase

contrast analysis, to show active RSV infection (as judged by red

florescence) within the epithelial cell layer (Figure 5). These phase

contrast images also appeared to show that the differentiated ALI

cultures retained their viability throughout the experimental

periods.

Infection of MoDCs with RSV in the Sub-epithelial Space
Direct exposure of MoDCs to RSV resulted in infection of these

cells as determined by flow cytometry (Figure 6). As was the case

with direct exposure of the of the pBEC to RSV, there was clear

evidence of MoDC infection at all time points.

In contrast we were unable to identify evidence of MoDCs

located on the basal layer of the transwell inserts becoming

infected at any time point after infection of the pBEC with RSV

despite vigorous replication within the differentiated epithelium

(Figure 6). However, the addition of macrophages to the epithelial

surface following infection of the epithelium resulted in clear

evidence of RSV infection of the MoDCs at 168 hours after

infection of the epithelium (Figure 6).

Quantitation of infection data from 6 experiments confirmed

that MoDCs directly exposed to RSV showed evidence of

productive infection at all three time points (Figure 7), with levels

at 24 and 48 hours being higher than that seen at 168 hours. In the

absence of apical macrophages there was no fluorescence

detectable by flow cytometry, in the MoDCs indirectly exposed

to rr-RSV through the infected pBECs at any time point. However

in the presence of MDMs there was a significant increase in

fluorescence in the indirectly exposed MoDCs at 168 hours

(Figure 7). Representative IF images and corresponding phase

contrast images from these experiments are shown in Figure 8.

Again these microscope images of the epithelium did not indicate

that the presence of macrophages had an effect on the integrity of

the epithelium at 168 hrs (Figure 8) and no leakage of basolateral

fluid was detected at the apical surface of the cultures, suggesting

that the epithelial layer was functionally intact.

Discussion

Our data confirm previous studies that show that RSV readily

infects differentiated airway epithelial cell cultures. More signifi-

Figure 7. Collated fluorescence data from direct and indirect
exposure studies. Cell infections and FACS analysis were performed
as outlined in the methods section. The data shown represent data
from 6 experiments performed in MoDCs with standard error of the
mean shown by the error bars.
doi:10.1371/journal.pone.0091855.g007
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cantly, our data also suggests that RSV replicating in dendritic

cells lying beneath a continuous differentiated primary bronchial

epithelium can directly infect the airway epithelium. However, in

the same co-culture model, sub-epithelial dendritic cells do not

themselves become infected with RSV following primary infection

of the epithelium unless macrophages are present on the apical

surface of the epithelium. We believe that these data support the

suggestion that RSV infection of the bronchial epithelium might

infect sub-epithelial dendritic cells and in turn these cells may

infect overlying epithelial cells.

It has previously been established that infection of bronchial

epithelium with RSV is polarized, with the virus only able to infect

the cells via their apical surface [27]. This suggests that the

infected MoDCs in our cultures may have released virus onto the

luminal surface. Since we did not identify any evidence of the

MoDCs migrating through the membrane and the epithelium

appeared confluent and patent, across all the inserts, it is possible

that the virus is released from ‘snorkeling’ dendrites that reach

through to the surface of the epithelium from the sub-epithelial

compartment [28,29]. Intriguingly sub-epithelial dendritic cells did

not become infected in the presence of infected epithelium unless

macrophages were present on the apical epithelial surface.

Dendritic cells are known to be very important in processing

respiratory pathogens and traditionally have been assumed to take

up pathogens directly through ‘snorkeling’ dendrites. In our

experiments infection of the epithelium is likely to have activated

the DCs through the release of a number of cytokines that have

previously been shown to be induced following RSV infections and

hence they were likely to be primed to take up virons making the

lack of uptake more surprising.

Further work is required to elucidate the mechanisms leading to

infection of the MoDCs in the triple co-culture model. Previous

studies involving primary differentiated epithelial cultures have

confirmed that RSV causes little in the way of cytopathy despite

evidence of on-going replication even 3 months after the initial

infection [27]. However, it is possible that the integrity of the

epithelium was compromised in the presence of macrophages thus

permitting the DCs to access the virus. Our phase contrast

microscopy images did not appear to show any significant

epithelial damage in the presence of macrophages as compared

with the dual co-culture pBECs. Cultures were still confluent at

168 hrs and we did not observe any leakage of media in to the

apical compartment of the transwell, suggesting that the culture

retained its integrity.

A possible alternative explanation is that macrophages are

necessary to for virus to infect the DCs. In recent studies using

inert nano-particulates in a similar triple co-culture model, it was

shown that macrophages on the luminal surface of the airways

contribute to the process of translocation of nano-particles across

the epithelium by taking them up at the epithelial surface and then

passing them directly to sub-epithelial DCs [19–21] which in turn

can also pass particulates on to other dendritic cells [30]. In these

studies imaging demonstrated the direct interaction of ‘snorkeling’

dendrites and the macrophages. The reported rate of transfer of

nanoparticles from macrophages to DCs was highly variable

depending on factors such as particle size, charge and dose. These

studies utilized a simple monolayer cell line in contrast to the

complex differentiated epithelium we have used in these exper-

iments.

We suggest that a similar to the situation may occur with viruses

such as RSV. As noted above it is known that RSV infects and is

released from the apical surface of epithelial cell [27]. Previous

in vitro work has shown that the virus is taken up by macrophages

and indeed can productively infect the [16–18]. It is possible that

uptake by macrophages is a necessary step for sub-epithelial

dendritic cells to acquire the virus similar to that described for

particulates though the mechanism needs to be explored. The lack

of infection of indirectly exposed MoDCs at the 48 hr time point is

likely to be due to a number of factors. In order to be transferred

via macrophages there is a need for RSV first to replicate in the

epithelium prior to being taken up by, and potentially replicating

in, macrophages. The use of a differentiated epithelium may also

have influenced the timing of infection of the sub-epithelial

MoDCs with these cultures forming much more efficient tight

junctions than the monolayers used in the nanoparticle experi-

ments. Unfortunately there were no intermediate time points

between 48 and 168 hours and hence we are unable to comment

on the dynamics of MoDC infection between these two time

points.

It is of interest that the presence of MDMs appeared to promote

viral replication when virus was added directly to the apical

surface of the pBECs. It is known that the virus replicates in

macrophage [16–18] and hence this may account for the apparent

increase.

In summary these experiments suggest that RSV from infected

sub-epithelial DCs can infect a differentiated bronchial epithelium.

It would appear that for the infected epithelium to infect

subepithelial DCs, surface macrophages need to be present.
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