129 research outputs found

    Biodiversity, traditional medicine and public health: where do they meet?

    Get PDF
    Given the increased use of traditional medicines, possibilities that would ensure its successful integration into a public health framework should be explored. This paper discusses some of the links between biodiversity and traditional medicine, and addresses their implications to public health. We explore the importance of biodiversity and ecosystem services to global and human health, the risks which human impacts on ecosystems and biodiversity present to human health and welfare

    Syphilis at the Crossroad of Phylogenetics and Paleopathology

    Get PDF
    The origin of syphilis is still controversial. Different research avenues explore its fascinating history. Here we employed a new integrative approach, where paleopathology and molecular analyses are combined. As an exercise to test the validity of this approach we examined different hypotheses on the origin of syphilis and other human diseases caused by treponemes (treponematoses). Initially, we constructed a worldwide map containing all accessible reports on palaeopathological evidences of treponematoses before Columbus's return to Europe. Then, we selected the oldest ones to calibrate the time of the most recent common ancestor of Treponema pallidum subsp. pallidum, T. pallidum subsp. endemicum and T. pallidum subsp. pertenue in phylogenetic analyses with 21 genetic regions of different T. pallidum strains previously reported. Finally, we estimated the treponemes' evolutionary rate to test three scenarios: A) if treponematoses accompanied human evolution since Homo erectus; B) if venereal syphilis arose very recently from less virulent strains caught in the New World about 500 years ago, and C) if it emerged in the Americas between 16,500 and 5,000 years ago. Two of the resulting evolutionary rates were unlikely and do not explain the existent osseous evidence. Thus, treponematoses, as we know them today, did not emerge with H. erectus, nor did venereal syphilis appear only five centuries ago. However, considering 16,500 years before present (yBP) as the time of the first colonization of the Americas, and approximately 5,000 yBP as the oldest probable evidence of venereal syphilis in the world, we could not entirely reject hypothesis C. We confirm that syphilis seems to have emerged in this time span, since the resulting evolutionary rate is compatible with those observed in other bacteria. In contrast, if the claims of precolumbian venereal syphilis outside the Americas are taken into account, the place of origin remains unsolved. Finally, the endeavor of joining paleopathology and phylogenetics proved to be a fruitful and promising approach for the study of infectious diseases

    Melt Inclusion Vapour Bubbles: The Hidden Reservoir for Major and Volatile Elements

    Get PDF
    Olivine-hosted melt inclusions (MIs) provide samples of magmatic liquids and their dissolved volatiles from deep within the plumbing system. Inevitable post-entrapment modifications can lead to significant compositional changes in the glass and/or any contained bubbles. Re-heating is a common technique to reverse MI crystallisation; however, its effect on volatile contents has been assumed to be minor. We test this assumption using crystallised and glassy basaltic MIs, combined with Raman spectroscopy and 3D imaging, to investigate the changes in fluid and solid phases in the bubbles before and after re-heating. Before re-heating, the bubble contains CO2 gas and anhydrite (CaSO4) crystallites. The rapid diffusion of major and volatile elements from the melt during re-heating creates new phases within the bubble: SO2, gypsum, Fe-sulphides. Vapour bubbles hosted in naturally glassy MIs similarly contain a plethora of solid phases (carbonates, sulphates, and sulphides) that account for up to 84% of the total MI sulphur, 80% of CO2, and 14% of FeO. In both re-heated and naturally glassy MIs, bubbles sequester major and volatile elements that are components of the total magmatic budget and represent a “loss” from the glass. Analyses of the glass alone significantly underestimates the original magma composition and storage parameters

    Fungal Endophyte Diversity in Sarracenia

    Get PDF
    Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers

    Ethnobotany in the Nepal Himalaya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indigenous knowledge has become recognized worldwide not only because of its intrinsic value but also because it has a potential instrumental value to science and conservation. In Nepal, the indigenous knowledge of useful and medicinal plants has roots in the remote past.</p> <p>Methods</p> <p>The present study reviews the indigenous knowledge and use of plant resources of the Nepal Himalayas along the altitudinal and longitudinal gradient. A total of 264 studies focusing on ethnobotany, ethnomedicine and diversity of medicinal and aromatic plants, carried out between 1979 and 2006 were consulted for the present analysis. In order to cross check and verify the data, seven districts of west Nepal were visited in four field campaigns.</p> <p>Results</p> <p>In contrast to an average of 21–28% ethnobotanically/ethnomedicinally important plants reported for Nepal, the present study found that up to about 55% of the flora of the study region had medicinal value. This indicates a vast amount of undocumented knowledge about important plant species that needs to be explored and documented. The richness of medicinal plants decreased with increasing altitude but the percentage of plants used as medicine steadily increased with increasing altitude. This was due to preferences given to herbal remedies in high altitude areas and a combination of having no alternative choices, poverty and trust in the effectiveness of folklore herbal remedies.</p> <p>Conclusion</p> <p>Indigenous knowledge systems are culturally valued and scientifically important. Strengthening the wise use and conservation of indigenous knowledge of useful plants may benefit and improve the living standard of poor people.</p

    Differential Response to Soil Salinity in Endangered Key Tree Cactus: Implications for Survival in a Changing Climate

    Get PDF
    Understanding reasons for biodiversity loss is essential for developing conservation and management strategies and is becoming increasingly urgent with climate change. Growing at elevations <1.4 m in the Florida Keys, USA, the endangered Key tree cactus (Pilosocereus robinii) experienced 84 percent loss of total stems from 1994 to 2007. The most severe losses of 99 and 88 percent stems occurred in the largest populations in the Lower Keys, where nine storms with high wind velocities and storm surges, occurred during this period. In contrast, three populations had substantial stem proliferation. To evaluate possible mortality factors related to changes in climate or forest structure, we examined habitat variables: soil salinity, elevation, canopy cover, and habitat structure near 16 dying or dead and 18 living plants growing in the Lower Keys. Soil salinity and elevation were the preliminary factors that discriminated live and dead plants. Soil salinity was 1.5 times greater, but elevation was 12 cm higher near dead plants than near live plants. However, distribution-wide stem loss was not significantly related to salinity or elevation. Controlled salinity trials indicated that salt tolerance to levels above 40 mM NaCl was related to maternal origin. Salt sensitive plants from the Lower Keys had less stem growth, lower root:shoot ratios, lower potassium: sodium ratios and lower recovery rate, but higher δ 13C than a salt tolerant lineage of unknown origin. Unraveling the genetic structure of salt tolerant and salt sensitive lineages in the Florida Keys will require further genetic tests. Worldwide rare species restricted to fragmented, low-elevation island habitats, with little or no connection to higher ground will face challenges from climate change-related factors. These great conservation challenges will require traditional conservation actions and possibly managed relocation that must be informed by studies such as these

    Environmental and Demographic Determinants of Avian Influenza Viruses in Waterfowl across the Contiguous United States

    Get PDF
    Outbreaks of avian influenza in North American poultry have been linked to wild waterfowl. A first step towards understanding where and when avian influenza viruses might emerge from North American waterfowl is to identify environmental and demographic determinants of infection in their populations. Laboratory studies indicate water temperature as one determinant of environmental viral persistence and we explored this hypothesis at the landscape scale. We also hypothesized that the interval apparent prevalence in ducks within a local watershed during the overwintering season would influence infection probabilities during the following breeding season within the same local watershed. Using avian influenza virus surveillance data collected from 19,965 wild waterfowl across the contiguous United States between October 2006 and September 2009 We fit Logistic regression models relating the infection status of individual birds sampled on their breeding grounds to demographic characteristics, temperature, and interval apparent prevalence during the preceding overwintering season at the local watershed scale. We found strong support for sex, age, and species differences in the probability an individual duck tested positive for avian influenza virus. In addition, we found that for every seven days the local minimum temperature fell below zero, the chance an individual would test positive for avian influenza virus increased by 5.9 percent. We also found a twelve percent increase in the chance an individual would test positive during the breeding season for every ten percent increase in the interval apparent prevalence during the prior overwintering season. These results suggest that viral deposition in water and sub-freezing temperatures during the overwintering season may act as determinants of individual level infection risk during the subsequent breeding season. Our findings have implications for future surveillance activities in waterfowl and domestic poultry populations. Further study is needed to identify how these drivers might interact with other host-specific infection determinants, such as species phylogeny, immunological status, and behavioral characteristics

    Herpes Simplex Virus Dances with Amyloid Precursor Protein while Exiting the Cell

    Get PDF
    Herpes simplex type 1 (HSV1) replicates in epithelial cells and secondarily enters local sensory neuronal processes, traveling retrograde to the neuronal nucleus to enter latency. Upon reawakening newly synthesized viral particles travel anterograde back to the epithelial cells of the lip, causing the recurrent cold sore. HSV1 co-purifies with amyloid precursor protein (APP), a cellular transmembrane glycoprotein and receptor for anterograde transport machinery that when proteolyzed produces A-beta, the major component of senile plaques. Here we focus on transport inside epithelial cells of newly synthesized virus during its transit to the cell surface. We hypothesize that HSV1 recruits cellular APP during transport. We explore this with quantitative immuno-fluorescence, immuno-gold electron-microscopy and live cell confocal imaging. After synchronous infection most nascent VP26-GFP-labeled viral particles in the cytoplasm co-localize with APP (72.8+/−6.7%) and travel together with APP inside living cells (81.1+/−28.9%). This interaction has functional consequences: HSV1 infection decreases the average velocity of APP particles (from 1.1+/−0.2 to 0.3+/−0.1 µm/s) and results in APP mal-distribution in infected cells, while interplay with APP-particles increases the frequency (from 10% to 81% motile) and velocity (from 0.3+/−0.1 to 0.4+/−0.1 µm/s) of VP26-GFP transport. In cells infected with HSV1 lacking the viral Fc receptor, gE, an envelope glycoprotein also involved in viral axonal transport, APP-capsid interactions are preserved while the distribution and dynamics of dual-label particles differ from wild-type by both immuno-fluorescence and live imaging. Knock-down of APP with siRNA eliminates APP staining, confirming specificity. Our results indicate that most intracellular HSV1 particles undergo frequent dynamic interplay with APP in a manner that facilitates viral transport and interferes with normal APP transport and distribution. Such dynamic interactions between APP and HSV1 suggest a mechanistic basis for the observed clinical relationship between HSV1 seropositivity and risk of Alzheimer's disease

    Traditional medicinal plant use in Northern Peru: tracking two thousand years of healing culture

    Get PDF
    This paper examines the traditional use of medicinal plants in Northern Peru, with special focus on the Departments of Piura, Lambayeque, La Libertad, Cajamarca, and San Martin. Northern Peru represents the center of the old Central Andean "Health Axis," stretching from Ecuador to Bolivia. The roots of traditional healing practices in this region go at least as far back as the Moche period (AC 100–800). Although about 50% of the plants in use reported in the colonial period have disappeared from the popular pharmacopoeia, the plant knowledge of the population is much more extensive than in other parts of the Andean region. 510 plant species used for medicinal purposes were collected, identified and their vernacular names, traditional uses and applications recorded. The families best represented were Asteraceae with 69 species, Fabaceae (35), Lamiaceae (25), and Solanaceae (21). Euphorbiaceae had twelve species, and Apiaceae and Poaceae 11 species. The highest number of species was used for the treatment of "magical/ritual" ailments (207 species), followed by respiratory disorders (95), problems of the urinary tract (85), infections of female organs (66), liver ailments (61), inflammations (59), stomach problems (51) and rheumatism (45). Most of the plants used (83%) were native to Peru. Fresh plants, often collected wild, were used in two thirds of all cases, and the most common applications included the ingestion of herb decoctions or the application of plant material as poultices
    corecore