223 research outputs found

    Compensated right ventricular function of the onset of pulmonary hypertension in a rat model depends on chamber remodeling and contractile augmentation.

    Get PDF
    Right-ventricular function is a good indicator of pulmonary arterial hypertension (PAH) prognosis; however, how the right ventricle (RV) adapts to the pressure overload is not well understood. Here, we aimed at characterizing the time course of RV early remodeling and discriminate the contribution of ventricular geometric remodeling and intrinsic changes in myocardial mechanical properties in a monocrotaline (MCT) animal model. In a longitudinal study of PAH, ventricular morphology and function were assessed weekly during the first four weeks after MCT exposure. Using invasive measurements of RV pressure and volume, heart performance was evaluated at end of systole and diastole to quantify contractility (end-systolic elastance) and chamber stiffness (end-diastolic elastance). To distinguish between morphological and intrinsic mechanisms, a computational model of the RV was developed and used to determine the level of prediction when accounting for wall masses and unloaded volume measurements changes. By four weeks, mean pulmonary arterial pressure and elastance rose significantly. RV pressures rose significantly after the second week accompanied by significant RV hypertrophy, but RV stroke volume and cardiac output were maintained. The model analysis suggested that, after two weeks, this compensation was only possible due to a significant increase in the intrinsic inotropy of RV myocardium. We conclude that this MCT-PAH rat is a model of RV compensation during the first month after treatment, where geometric remodeling on EDPVR and increased myocardial contractility on ESPVR are the major mechanisms by which stroke volume is preserved in the setting of elevated pulmonary arterial pressure. The mediators of this compensation might themselves promote longer-term adverse remodeling and decompensation in this animal model

    Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of meier-gorlin syndrome

    Get PDF
    Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency

    DNA Suspension Arrays: Silencing Discrete Artifacts for High-Sensitivity Applications

    Get PDF
    Detection of low frequency single nucleotide polymorphisms (SNPs) has important implications in early screening for tumorgenesis, genetic disorders and pathogen drug resistance. Nucleic acid arrays are a powerful tool for genome-scale SNP analysis, but detection of low-frequency SNPs in a mixed population on an array is problematic. We demonstrate a model assay for HIV-1 drug resistance mutations, wherein ligase discrimination products are collected on a suspension array. In developing this system, we discovered that signal from multiple polymorphisms was obscured by two discrete hybridization artifacts. Specifically: 1) tethering of unligated probes on the template DNA elicited false signal and 2) unpredictable probe secondary structures impaired probe capture and suppressed legitimate signal from the array. Two sets of oligonucleotides were used to disrupt these structures; one to displace unligated reporter labels from the bead-bound species and another to occupy sequences which interfered with array hybridization. This artifact silencing system resulted in a mean 21-fold increased sensitivity for 29 minority variants of 17 codons in our model assay for mutations most commonly associated with HIV-1 drug resistance. Furthermore, since the artifacts we characterized are not unique to our system, their specific inhibition might improve the quality of data from solid-state microarrays as well as from the growing number of multiple analyte suspension arrays relying on sequence-specific nucleic acid target capture

    Direct effects of doxorubicin on skeletal muscle contribute to fatigue

    Get PDF
    Chemotherapy-induced fatigue is a multidimensional symptom. Oxidative stress has been proposed as a working mechanism for anthracycline-induced cardiotoxicity. In this study, doxorubicin (DOX) was tested on skeletal muscle function. Doxorubicin induced impaired ex vivo skeletal muscle relaxation followed in time by contraction impediment, which could be explained by DOX-induced changes in Ca2+ responses of myotubes in vitro. The Ca2+ responses in skeletal muscle, however, could not be explained by oxidative stress

    The influence of polygenic risk for bipolar disorder on neural activation assessed using fMRI

    Get PDF
    Genome-wide association studies (GWAS) have demonstrated a significant polygenic contribution to bipolar disorder (BD) where disease risk is determined by the summation of many alleles of small individual magnitude. Modelling polygenic risk scores may be a powerful way of identifying disrupted brain regions whose genetic architecture is related to that of BD. We determined the extent to which common genetic variation underlying risk to BD affected neural activation during an executive processing/language task in individuals at familial risk of BD and healthy controls. Polygenic risk scores were calculated for each individual based on GWAS data from the Psychiatric GWAS Consortium Bipolar Disorder Working Group (PGC-BD) of over 16 000 subjects. The familial group had a significantly higher polygene score than the control group (P=0.04). There were no significant group by polygene interaction effects in terms of association with brain activation. However, we did find that an increasing polygenic risk allele load for BD was associated with increased activation in limbic regions previously implicated in BD, including the anterior cingulate cortex and amygdala, across both groups. The findings suggest that this novel polygenic approach to examine brain-imaging data may be a useful means of identifying genetically mediated traits mechanistically linked to the aetiology of BD

    The role of dietary fibre in pig production, with a particular emphasis on reproduction

    Get PDF
    Abstract Fibres from a variety of sources are a common constituent of pig feeds. They provide a means to utilise locally-produced plant materials which are often a by-product of the food or drink industry. The value of a high fibre diet in terms of producing satiety has long been recognised. However the addition of fibre can reduce feed intake, which is clearly detrimental during stages of the production cycle when nutrient needs are high, for example in growing piglets and during lactation. More recently, fibre has been found to promote novel benefits to pig production systems, particularly given the reduction in antimicrobial use world-wide, concern for the welfare of animals fed a restricted diet and the need to ensure that such systems are more environmentally friendly. For example, inclusion of dietary fibre can alter the gut microbiota in ways that could reduce the need for antibiotics, while controlled addition of certain fibre types may reduce nitrogen losses into the environment and so reduce the environmental cost of pig production. Of particular potential value is the opportunity to use crude fibre concentrates as ‘functional’ feed additives to improve young pig growth and welfare. Perhaps the greatest opportunity for the use of high fibre diets is to improve the reproductive efficiency of pigs. Increased dietary fibre before mating improves oocyte maturation, prenatal survival and litter size; providing a consumer-acceptable means of increasing the amount of saleable meat produced per sow. The mechanisms responsible for these beneficial effects remain to be elucidated. However, changes in plasma and follicular fluid concentrations of key hormones and metabolites, as well as effects of the hypothalamic satiety centre on gonadotrophin secretion and epigenetic effects are strong candidates

    The pressure to communicate efficiently continues to shape language use later in life

    Get PDF
    Language use is shaped by a pressure to communicate efficiently, yet the tendency towards redundancy is said to increase in older age. The longstanding assumption is that saying more than is necessary is inefficient and may be driven by age-related decline in inhibition (i.e. the ability to filter out irrelevant information). However, recent work proposes an alternative account of efficiency: In certain contexts, redundancy facilitates communication (e.g., when the colour or size of an object is perceptually salient and its mention aids the listener’s search). A critical question follows: Are older adults indiscriminately redundant, or do they modulate their use of redundant information to facilitate communication? We tested efficiency and cognitive capacities in 200 adults aged 19–82. Irrespective of age, adults with better attention switching skills were redundant in efficient ways, demonstrating that the pressure to communicate efficiently continues to shape language use later in life
    • …
    corecore