443 research outputs found

    On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within

    Full text link
    In this chapter, we analyze the steady-state microscale fluid--structure interaction (FSI) between a generalized Newtonian fluid and a hyperelastic tube. Physiological flows, especially in hemodynamics, serve as primary examples of such FSI phenomena. The small scale of the physical system renders the flow field, under the power-law rheological model, amenable to a closed-form solution using the lubrication approximation. On the other hand, negligible shear stresses on the walls of a long vessel allow the structure to be treated as a pressure vessel. The constitutive equation for the microtube is prescribed via the strain energy functional for an incompressible, isotropic Mooney--Rivlin material. We employ both the thin- and thick-walled formulations of the pressure vessel theory, and derive the static relation between the pressure load and the deformation of the structure. We harness the latter to determine the flow rate--pressure drop relationship for non-Newtonian flow in thin- and thick-walled soft hyperelastic microtubes. Through illustrative examples, we discuss how a hyperelastic tube supports the same pressure load as a linearly elastic tube with smaller deformation, thus requiring a higher pressure drop across itself to maintain a fixed flow rate.Comment: 19 pages, 3 figures, Springer book class; v2: minor revisions, final form of invited contribution to the Springer volume entitled "Dynamical Processes in Generalized Continua and Structures" (in honour of Academician D.I. Indeitsev), eds. H. Altenbach, A. Belyaev, V. A. Eremeyev, A. Krivtsov and A. V. Porubo

    Bridging Time Scales in Cellular Decision Making with a Stochastic Bistable Switch

    Get PDF
    Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.Comment: 14 pages, 4 figure

    On-chip pressure measurements and channel deformation after oil absorption

    Get PDF
    Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these structures is vital to mimic physiological conditions. The flexibility of PDMS leads to pressure-induced deformation under flow, leading to variable flow profiles along a device. Here, we investigate the change in Young’s modulus of microfluidic channels due to infiltration of mineral oil, a PDMS permeable fluid, and how this affects the resulting pressure profile using a novel pressure measurement method. We found a 53% decrease in Young’s modulus of PDMS due to mineral oil absorption over the course of 3 h accounted for lower internal pressure and larger channel deformation compared to fresh PDMS at a given flow rate. Confocal fluorescence microscopy used to image channel profiles before and after the introduction of mineral oil showed a change in pressure-induced deformation after infiltration of the oil. Atomic force microscopy (AFM) nanoindentation was used to measure Young’s modulus of PDMS before (2.80±0.032.80±0.03 MPa) and after (1.32±0.041.32±0.04 MPa) mineral oil absorption. Raman spectroscopy showed the infiltration of mineral oil into PDMS from channel walls and revealed the diffusion coefficient of mineral oil in PDMS

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    Distributed manufacturing: scope, challenges and opportunities

    Get PDF
    This discussion paper aims to set out the key challenges and opportunities emerging from distributed manufacturing (DM). We begin by describing the concept, available definitions and consider its evolution where recent production technology developments (such as additive and continuous production process technologies), digitization together with infrastructural developments (in terms of IoT and big-data) provide new opportunities. To further explore the evolving nature of DM, the authors, each of whom are involved in specific applications of DM research, examine through an expert panel workshop environment emerging DM applications involving new production and supporting infrastructural technologies. This paper presents these generalizable findings on DM challenges and opportunities in terms of products, enabling production technologies, and the impact on the wider production and industrial system. Industry structure and location of activities are examined in terms of the democratizing impact on participating network actors. The paper concludes with a discussion on the changing nature of manufacturing as a result of DM, from the traditional centralized, large scale, long lead-time forecast driven production operations, to a new DM paradigm where manufacturing is a decentralized, autonomous near end-user driven activity. A forward research agenda is proposed that considers the impact of DM on the industrial and urban landscape.The Cambridge–Hamied Visiting Lecture Scheme and UKIERIThis is the author accepted manuscript. The final version is available from Taylor & Francis via https://doi.org/10.1080/00207543.2016.119230

    Technical Analysis of cDNA Microarrays

    Get PDF
    Background: There is extensive variation in gene expression among individuals within and between populations. Accurate measures of the variation in mRNA expression using microarrays can be confounded by technical variation, which includes variation in RNA isolation procedures, day of hybridization and methods used to amplify and dye label RNA for hybridization. Methodology/Principal Findings: In this manuscript we analyze the relationship between the amount of mRNA and the fluorescent signal from the microarray hybridizations demonstrating that for a wide-range of mRNA concentrations the fluorescent signal is a linear function of the amount of mRNA. Additionally, the separate isolation, labeling or hybridization of RNA does not add significant amounts of variation in microarray measures of gene expression. However, single or double rounds of amplification for labeling do have small but significant affects on 10 % of genes, but this source of technical variation is easy to avoid. To examine both technical and stochastic biological variation, mRNA expression was measured from the same five individuals over a six-week time course. Conclusion: There were few, if any, meaningful differences in gene expression among time points. Thus, microarray measures using standard laboratory procedures can be precise and quantitative and are not subject to significant rando

    Siderophore production by Bacillus megaterium : effect of growth-phase and cultural conditions

    Get PDF
    Siderophore production by Bacillus megaterium was detected, in an iron-deficient culture medium, during the exponential growth phase, prior to the sporulation, in the presence of glucose; these results suggested that the onset of siderophore production did not require glucose depletion and was not related with the sporulation. The siderophore production by B. megaterium was affected by the carbon source used. The growth on glycerol promoted the very high siderophore production (1,182 μmol g−1 dry weight biomass); the opposite effect was observed in the presence of mannose (251 μmol g−1 dry weight biomass). The growth in the presence of fructose, galactose, glucose, lactose, maltose or sucrose, originated similar concentrations of siderophore (546–842 μmol g−1 dry weight biomass). Aeration had a positive effect on the production of siderophore. Incubation of B. megaterium under static conditions delayed and reduced the growth and the production of siderophore, compared with the incubation in stirred conditions.The authors thank Porto University/Totta Bank for their financial support through the project "Microbiological production of chelating agents" (Ref: 180). The authors also thank the Fundacao para a Ciencia e a Tecnologia (FCT) through the Portuguese Government for their financial support of this work through the grants Strategic project-LA23/2013-2014 (IBB) and PEST-C/EQB/LA0006/2011 (REQUIMTE). Manuela D. Machado gratefully acknowledges the postdoctoral (SFRH/BPD/72816/2010) grant from FCT

    EphB6 Receptor Modulates Micro RNA Profile of Breast Carcinoma Cells

    Get PDF
    Breast carcinoma cells have a specific pattern of expression for Eph receptors and ephrin ligands. EphB6 has previously been characterized as a signature molecule for invasive breast carcinoma cells. The transcription of EphB6 is silenced in breast carcinoma cells and its re-expression leads to decreased invasiveness of MDA-MB-231 cells. Such differences in phenotypes of native and EphB6 expressing MDA-MB-231 cells relate to an altered profile of micro RNAs. Comparative hybridization of total RNA to slides containing all known miRNAs by using locked nucleic acid (LNA) miRCURY platform yielded a significantly altered profile of miRNAs in MDA-MB-231 cells stably transfected with EphB6. After applying a threshold of change and a p-value of <0.001, the list of significantly altered miRNAs included miR-16, miR-23a, miR-24, miR-26a, miR-29a, miR-100, miRPlus-E1172 and miRPlus-E1258. The array-based changes were validated by real-time qPCR of miR-16, miR-23a, miR-24 and miR-100. Except miRPlus-E1172 and miRPlus-E1258, the remaining six miRNAs have been observed in a variety of cancers. The biological relevance of target mRNAs was predicted by using a common-target selection approach that allowed the identification of SMARCA5, SMARCC1, eIF2C2, eIF2C4, eIF4EBP2, FKABP5, FKBP1A, TRIB1, TRIB2, TRIB3, BMPR2, BMPR1A and BMPR1B as important targets of a subset of significantly altered miRNAs. Quantitative PCR revealed that the levels of SMARCC1, eIFC4, eIF4EB2, FKBP1a, FKBP5, TRIB1, TRIB3, BMPR1a and BMPR2 transcripts were significantly decreased in MDA-MB-231 cells transfected with EphB6. These observations confirm targeting of specific mRNAs by miR-100, miR-23a, miR-16 and miR-24, and suggest that the kinase-deficient EphB6 receptor is capable of initiating signal transduction from the cell surface to the nucleus resulting in the altered expression of a variety of genes involved in tumorigenesis and invasion. The alterations in miRNAs and their target mRNAs also suggest indirect involvement of EphB6 in PI3K/Akt/mTOR pathways
    corecore