125 research outputs found

    TL1A Selectively Enhances IL-12/IL-18-Induced NK Cell Cytotoxicity against NK-Resistant Tumor Targets

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Introduction TL1A (TNFSF15) augments IFN-γ production by IL-12/IL-18 responsive human T cells. Its ligand, death domain receptor 3 (DR3), is induced by activation on T and NK cells. Although IL-12/IL-18 induces DR3 expression on most NK cells, addition of TL1A minimally increases IFN-

    Age-Dependent Maturation of Toll-Like Receptor-Mediated Cytokine Responses in Gambian Infants

    Get PDF
    The global burden of neonatal and infant mortality due to infection is staggering, particularly in resource-poor settings. Early childhood vaccination is one of the major interventions that can reduce this burden, but there are specific limitations to inducing effective immunity in early life, including impaired neonatal leukocyte production of Th1-polarizing cytokines to many stimuli. Characterizing the ontogeny of Toll-like receptor (TLR)-mediated innate immune responses in infants may shed light on susceptibility to infection in this vulnerable age group, and provide insights into TLR agonists as candidate adjuvants for improved neonatal vaccines. As little is known about the leukocyte responses of infants in resource-poor settings, we characterized production of Th1-, Th2-, and anti-inflammatory- cytokines in response to agonists of TLRs 1-9 in whole blood from 120 Gambian infants ranging from newborns (cord blood) to 12 months of age. Most of the TLR agonists induced TNFα, IL-1β, IL-6, and IL-10 in cord blood. The greatest TNFα responses were observed for TLR4, -5, and -8 agonists, the highest being the thiazoloquinoline CLO75 (TLR7/8) that also uniquely induced cord blood IFNγ production. For most agonists, TLR-mediated TNFα and IFNγ responses increased from birth to 1 month of age. TLR8 agonists also induced the greatest production of the Th1-polarizing cytokines TNFα and IFNγ throughout the first year of life, although the relative responses to the single TLR8 agonist and the combined TLR7/8 agonist changed with age. In contrast, IL-1β, IL-6, and IL-10 responses to most agonists were robust at birth and remained stable through 12 months of age. These observations provide fresh insights into the ontogeny of innate immunity in African children, and may inform development of age-specific adjuvanted vaccine formulations important for global health

    5-Hydroxytryptamine Modulates Migration, Cytokine and Chemokine Release and T-Cell Priming Capacity of Dendritic Cells In Vitro and In Vivo

    Get PDF
    Beside its well described role in the central and peripheral nervous system 5-hydroxytryptamine (5-HT), commonly known as serotonin, is also a potent immuno-modulator. Serotoninergic receptors (5-HTR) are expressed by a broad range of inflammatory cell types, including dendritic cells (DCs). In this study, we aimed to further characterize the immuno-biological properties of serotoninergic receptors on human monocyte-derived DCs. 5-HT was able to induce oriented migration in immature but not in LPS-matured DCs via activation of 5-HTR1 and 5-HTR2 receptor subtypes. Accordingly, 5-HT also increased migration of pulmonary DCs to draining lymph nodes in vivo. By binding to 5-HTR3, 5-HTR4 and 5-HTR7 receptors, 5-HT up-regulated production of the pro-inflammatory cytokine IL-6. Additionally, 5-HT influenced chemokine release by human monocyte-derived DCs: production of the potent Th1 chemoattractant IP-10/CXCL10 was inhibited in mature DCs, whereas CCL22/MDC secretion was up-regulated in both immature and mature DCs. Furthermore, DCs matured in the presence of 5-HT switched to a high IL-10 and low IL-12p70 secreting phenotype. Consistently, 5-HT favoured the outcome of a Th2 immune response both in vitro and in vivo. In summary, our study shows that 5-HT is a potent regulator of human dendritic cell function, and that targeting serotoninergic receptors might be a promising approach for the treatment of inflammatory disorders

    Pleural Tuberculosis in Patients with Early HIV Infection Is Associated with Increased TNF-Alpha Expression and Necrosis in Granulomas

    Get PDF
    Although granulomas may be an essential host response against persistent antigens, they are also associated with immunopathology. We investigated whether HIV co-infection affects histopathological appearance and cytokine profiles of pleural granulomas in patients with active pleural tuberculosis (TB). Granulomas were investigated in pleural biopsies from HIV positive and negative TB pleuritis patients. Granulomas were characterised as necrotic or non-necrotic, graded histologically and investigated for the mRNA expression of IL-12, IFN-γ, TNF-α and IL-4 by in situ hybridisation. In all TB patients a mixed Th1/Th2 profile was noted. Necrotic granulomas were more evident in HIV positive patients with a clear association between TNF-α and necrosis. This study demonstrates immune dysregulation which may include TNF-α-mediated immunopathology at the site of disease in HIV infected pleural TB patients

    Distinct Cytoplasmic and Nuclear Functions of the Stress Induced Protein DDIT3/CHOP/GADD153

    Get PDF
    DDIT3, also known as GADD153 or CHOP, encodes a basic leucine zipper transcription factor of the dimer forming C/EBP family. DDIT3 is known as a key regulator of cellular stress response, but its target genes and functions are not well characterized. Here, we applied a genome wide microarray based expression analysis to identify DDIT3 target genes and functions. By analyzing cells carrying tamoxifen inducible DDIT3 expression constructs we show distinct gene expression profiles for cells with cytoplasmic and nuclear localized DDIT3. Of 175 target genes identified only 3 were regulated by DDIT3 in both cellular localizations. More than two thirds of the genes were downregulated, supporting a role for DDIT3 as a dominant negative factor that could act by either cytoplasmic or nuclear sequestration of dimer forming transcription factor partners. Functional annotation of target genes showed cell migration, proliferation and apoptosis/survival as the most affected categories. Cytoplasmic DDIT3 affected more migration associated genes, while nuclear DDIT3 regulated more cell cycle controlling genes. Cell culture experiments confirmed that cytoplasmic DDIT3 inhibited migration, while nuclear DDIT3 caused a G1 cell cycle arrest. Promoters of target genes showed no common sequence motifs, reflecting that DDIT3 forms heterodimers with several alternative transcription factors that bind to different motifs. We conclude that expression of cytoplasmic DDIT3 regulated 94 genes. Nuclear translocation of DDIT3 regulated 81 additional genes linked to functions already affected by cytoplasmic DDIT3. Characterization of DDIT3 regulated functions helps understanding its role in stress response and involvement in cancer and degenerative disorders

    Interleukin-12p40 Modulates Human Metapneumovirus-Induced Pulmonary Disease in an Acute Mouse Model of Infection

    Get PDF
    The mechanisms that regulate the host immune response induced by human metapneumovirus (hMPV), a newly-recognized member of the Paramyxoviridae family, are largely unknown. Cytokines play an important role in modulating inflammatory responses during viral infections. IL-12p40, a known important mediator in limiting lung inflammation, is induced by hMPV and its production is sustained after the resolution phase of infection suggesting that this cytokine plays a role in the immune response against hMPV. In this work, we demonstrated that in mice deficient in IL-12p40, hMPV infection induced an exacerbated pulmonary inflammatory response and mucus production, altered cytokine response, and decreased lung function. However, hMPV infection in these mice does not have an effect on viral replication. These results identify an important regulatory role of IL-12p40 in hMPV infection

    Shaping immune responses through the activation of dendritic cells–P2 receptors

    Get PDF
    Dendritic cells (DCs) activate and shape the adaptive immune response by capturing antigens, migrating to peripheral lymphoid organs where naïve T cells reside, expressing high levels of MHC and costimulatory molecules and secreting cytokines and chemokines. DCs are endowed with a high degree of functional plasticity and their functions are tightly regulated. Besides initiating adaptive immune responses, DCs play a key role in maintaining peripheral tolerance toward self-antigens. On the basis of the information gathered from the tissue where they reside, DCs adjust their functional activity to ensure that protective immunity is favoured while unwanted or exaggerated immune responses are prevented. A wide variety of signals from neighbouring cells affecting DC functional activity have been described. Here we will discuss the complex role of extracellular nucleotides in the regulation of DC function and the role of P2 receptors as possible tools to manipulate immune responses

    A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12

    Get PDF
    Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e., years). The length scales span the farthest reaches of the human body (i.e., meters) down to the range of molecular interactions (i.e., nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales

    An early history of T cell-mediated cytotoxicity.

    Get PDF
    After 60 years of intense fundamental research into T cell-mediated cytotoxicity, we have gained a detailed knowledge of the cells involved, specific recognition mechanisms and post-recognition perforin-granzyme-based and FAS-based molecular mechanisms. What could not be anticipated at the outset was how discovery of the mechanisms regulating the activation and function of cytotoxic T cells would lead to new developments in cancer immunotherapy. Given the profound recent interest in therapeutic manipulation of cytotoxic T cell responses, it is an opportune time to look back on the early history of the field. This Timeline describes how the early findings occurred and eventually led to current therapeutic applications
    corecore