120 research outputs found

    Potentials of Plasma NGAL and MIC-1 as Biomarker(s) in the Diagnosis of Lethal Pancreatic Cancer

    Get PDF
    Pancreatic cancer (PC) is lethal malignancy with very high mortality rate. Absence of sensitive and specific marker(s) is one of the major factors for poor prognosis of PC patients. In pilot studies using small set of patients, secreted acute phase proteins neutrophil gelatinase associated lipocalin (NGAL) and TGF-β family member macrophage inhibitory cytokine-1 (MIC-1) are proposed as most potential biomarkers specifically elevated in the blood of PC patients. However, their performance as diagnostic markers for PC, particularly in pre-treatment patients, remains unknown. In order to evaluate the diagnostic efficacy of NGAL and MIC-1, their levels were measured in plasma samples from patients with pre-treatment PC patients (n = 91) and compared it with those in healthy control (HC) individuals (n = 24) and patients with chronic pancreatitis (CP, n = 23). The diagnostic performance of these two proteins was further compared with that of CA19-9, a tumor marker commonly used to follow PC progression. The levels of all three biomarkers were significantly higher in PC compared to HCs. The mean (± standard deviation, SD) plasma NGAL, CA19-9 and MIC-1 levels in PC patients was 111.1 ng/mL (2.2), 219.2 U/mL (7.8) and 4.5 ng/mL (4.1), respectively. In comparing resectable PC to healthy patients, all three biomarkers were found to have comparable sensitivities (between 64%-81%) but CA19-9 and NGAL had a higher specificity (92% and 88%, respectively). For distinguishing resectable PC from CP patients, CA19-9 and MIC-1 were most specific (74% and 78% respectively). CA19-9 at an optimal cut-off of 54.1 U/ml is highly specific in differentiating resectable (stage 1/2) pancreatic cancer patients from controls in comparison to its clinical cut-off (37.1 U/ml). Notably, the addition of MIC-1 to CA19-9 significantly improved the ability to distinguish resectable PC cases from CP (p = 0.029). Overall, MIC-1 in combination with CA19-9 improved the diagnostic accuracy of differentiating PC from CP and HCs

    Circulating Fibroblast Growth Factor 21 Levels Are Closely Associated with Hepatic Fat Content: A Cross-Sectional Study

    Get PDF
    BACKGROUND AND AIMS: Fibroblasts growth factor 21 (FGF21), a liver-secreted endocrine factor involved in regulating glucose and lipid metabolism, has been shown to be elevated in patients with non-alcoholic fatty liver disease (NAFLD). This study aimed to evaluate the quantitative correlation between serum FGF21 level and hepatic fat content. METHODS: A total of 138 subjects (72 male and 66 female) aged from 18 to 65 years with abnormal glucose metabolism and B-ultrasonography diagnosed fatty liver were enrolled in the study. Serum FGF21 levels were determined by an in-house chemiluminescence immunoassay and hepatic fat contents were measured by proton magnetic resonance spectroscopy. RESULTS: Serum FGF21 increased progressively with the increase of hepatic fat content, but when hepatic fat content increased to the fourth quartile, FGF21 tended to decline. Serum FGF21 concentrations were positively correlated with hepatic fat content especially in subjects with mild/moderate hepatic steatosis (r = 0.276, p = 0.009). Within the range of hepatic steatosis from the first to third quartile, FGF21 was superior to any other traditional clinical markers including ALT to reflect hepatic fat content. When the patients with severe hepatic steatosis (the fourth quartile) were included, the quantitative correlation between FGF21 and hepatic fat content was weakened. CONCLUSIONS: Serum FGF21 was a potential biomarker to reflect the hepatic fat content in patients with mild or moderate NAFLD. In severe NAFLD patients, FGF21 concentration might decrease due to liver inflammation or injury

    Repair of Parastomal Hernias with Biologic Grafts: A Systematic Review

    Get PDF
    Contains fulltext : 98303.pdf (publisher's version ) (Open Access)BACKGROUND: Biologic grafts are increasingly used instead of synthetic mesh for parastomal hernia repair due to concerns of synthetic mesh-related complications. This systematic review was designed to evaluate the use of these collagen-based scaffolds for the repair of parastomal hernias. METHODS: Studies were retrieved after searching the electronic databases MEDLINE, EMBASE and Cochrane CENTRAL. The search terms 'paracolostomy', 'paraileostomy', 'parastomal', 'colostomy', 'ileostomy', 'hernia', 'defect', 'closure', 'repair' and 'reconstruction' were used. Selection of studies and assessment of methodological quality were performed with a modified MINORS index. All reports on repair of parastomal hernias using a collagen-based biologic scaffold to reinforce or bridge the defect were included. Outcomes were recurrence rate, mortality and morbidity. RESULTS: Four retrospective studies with a combined enrolment of 57 patients were included. Recurrence occurred in 15.7% (95% confidence interval [CI] 7.8-25.9) of patients and wound-related complications in 26.2% (95% CI 14.7-39.5). No mortality or graft infections were reported. CONCLUSIONS: The use of reinforcing or bridging biologic grafts during parastomal hernia repair results in acceptable rates of recurrence and complications. However, given the similar rates of recurrence and complications achieved using synthetic mesh in this scenario, the evidence does not support use of biologic grafts

    CDK2 and PKA Mediated-Sequential Phosphorylation Is Critical for p19INK4d Function in the DNA Damage Response

    Get PDF
    DNA damage triggers a phosphorylation-based signaling cascade known as the DNA damage response. p19INK4d, a member of the INK4 family of CDK4/6 inhibitors, has been reported to participate in the DNA damage response promoting DNA repair and cell survival. Here, we provide mechanistic insight into the activation mechanism of p19INK4d linked to the response to DNA damage. Results showed that p19INK4d becomes phosphorylated following UV radiation, β-amyloid peptide and cisplatin treatments. ATM-Chk2/ATR-Chk1 signaling pathways were found to be differentially involved in p19INK4d phosphorylation depending on the type of DNA damage. Two sequential phosphorylation events at serine 76 and threonine 141 were identified using p19INK4d single-point mutants in metabolic labeling assays with 32P-orthophosphate. CDK2 and PKA were found to participate in p19INK4d phosphorylation process and that they would mediate serine 76 and threonine 141 modifications respectively. Nuclear translocation of p19INK4d induced by DNA damage was shown to be dependent on serine 76 phosphorylation. Most importantly, both phosphorylation sites were found to be crucial for p19INK4d function in DNA repair and cell survival. In contrast, serine 76 and threonine 141 were dispensable for CDK4/6 inhibition highlighting the independence of p19INK4d functions, in agreement with our previous findings. These results constitute the first description of the activation mechanism of p19INK4d in response to genotoxic stress and demonstrate the functional relevance of this activation following DNA damage

    Genomic Instability, Defective Spermatogenesis, Immunodeficiency, and Cancer in a Mouse Model of the RIDDLE Syndrome

    Get PDF
    Eukaryotic cells have evolved to use complex pathways for DNA damage signaling and repair to maintain genomic integrity. RNF168 is a novel E3 ligase that functions downstream of ATM,γ-H2A.X, MDC1, and RNF8. It has been shown to ubiquitylate histone H2A and to facilitate the recruitment of other DNA damage response proteins, including 53BP1, to sites of DNA break. In addition, RNF168 mutations have been causally linked to the human RIDDLE syndrome. In this study, we report that Rnf168−/− mice are immunodeficient and exhibit increased radiosensitivity. Rnf168−/− males suffer from impaired spermatogenesis in an age-dependent manner. Interestingly, in contrast to H2a.x−/−, Mdc1−/−, and Rnf8−/− cells, transient recruitment of 53bp1 to DNA double-strand breaks was abolished in Rnf168−/− cells. Remarkably, similar to 53bp1 inactivation, but different from H2a.x deficiency, inactivation of Rnf168 impairs long-range V(D)J recombination in thymocytes and results in long insertions at the class-switch junctions of B-cells. Loss of Rnf168 increases genomic instability and synergizes with p53 inactivation in promoting tumorigenesis. Our data reveal the important physiological functions of Rnf168 and support its role in both γ-H2a.x-Mdc1-Rnf8-dependent and -independent signaling pathways of DNA double-strand breaks. These results highlight a central role for RNF168 in the hierarchical network of DNA break signaling that maintains genomic integrity and suppresses cancer development in mammals

    Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells.

    Get PDF
    The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib is FDA approved for the treatment of BRCA-mutated breast, ovarian and pancreatic cancers. Olaparib inhibits PARP1/2 enzymatic activity and traps PARP1 on DNA at single-strand breaks, leading to replication-induced DNA damage that requires BRCA1/2-dependent homologous recombination repair. Moreover, DNA damage response pathways mediated by the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia mutated and Rad3-related (ATR) kinases are hypothesised to be important survival pathways in response to PARP-inhibitor treatment. Here, we show that olaparib combines synergistically with the ATR-inhibitor AZD6738 (ceralasertib), in vitro, leading to selective cell death in ATM-deficient cells. We observe that 24 h olaparib treatment causes cells to accumulate in G2-M of the cell cycle, however, co-administration with AZD6738 releases the olaparib-treated cells from G2 arrest. Selectively in ATM-knockout cells, we show that combined olaparib/AZD6738 treatment induces more chromosomal aberrations and achieves this at lower concentrations and earlier treatment time-points than either monotherapy. Furthermore, single-agent olaparib efficacy in vitro requires PARP inhibition throughout multiple rounds of replication. Here, we demonstrate in several ATM-deficient cell lines that the olaparib and AZD6738 combination induces cell death within 1-2 cell divisions, suggesting that combined treatment could circumvent the need for prolonged drug exposure. Finally, we demonstrate in vivo combination activity of olaparib and AZD6738 in xenograft and PDX mouse models with complete ATM loss. Collectively, these data provide a mechanistic understanding of combined PARP and ATR inhibition in ATM-deficient models, and support the clinical development of AZD6738 in combination with olaparib

    Expert consensus document:Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)

    Get PDF
    Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted
    corecore