2,360 research outputs found

    A Comparison of Accelerated and Non-accelerated MRI Scans for Brain Volume and Boundary Shift Integral Measures of Volume Change: Evidence from the ADNI Dataset

    Get PDF
    The aim of this study was to assess whether the use of accelerated MRI scans in place of non-accelerated scans influenced brain volume and atrophy rate measures in controls and subjects with mild cognitive impairment and Alzheimer’s disease. We used data from 861 subjects at baseline, 573 subjects at 6 months and 384 subjects at 12 months from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We calculated whole-brain, ventricular and hippocampal atrophy rates using the k-means boundary shift integral (BSI). Scan quality was visually assessed and the proportion of good quality accelerated and non-accelerated scans compared. We also compared MMSE scores, vascular burden and age between subjects with poor quality scans with those with good quality scans. Finally, we estimated sample size requirements for a hypothetical clinical trial when using atrophy rates from accelerated scans and non-accelerated scans. No significant differences in whole-brain, ventricular and hippocampal volumes and atrophy rates were found between accelerated and non-accelerated scans. Twice as many non-accelerated scan pairs suffered from at least some motion artefacts compared with accelerated scan pairs (p ≤ 0.001), which may influence the BSI. Subjects whose accelerated scans had significant motion had a higher mean vascular burden and age (p ≤ 0.05) whilst subjects whose non-accelerated scans had significant motion had poorer MMSE scores (p ≤ 0.05). No difference in estimated sample size requirements was found when using accelerated vs. non-accelerated scans. Accelerated scans reduce scan time and are better tolerated. Therefore it may be advantageous to use accelerated over non-accelerated scans in clinical trials that use ADNI-type protocols, especially in more cognitively impaired subjects

    Acceleration of hippocampal atrophy rates in asymptomatic amyloidosis

    Get PDF
    Increased rates of brain atrophy measured from serial magnetic resonance imaging precede symptom onset in Alzheimer's disease and may be useful outcome measures for prodromal clinical trials. Appropriate trial design requires a detailed understanding of the relationships between β-amyloid load and accumulation, and rate of brain change at this stage of the disease. Fifty-two healthy individuals (72.3 ± 6.9 years) from Australian Imaging, Biomarkers and Lifestyle Study of Aging had serial (0, 18 m, 36 m) magnetic resonance imaging, (0, 18 m) Pittsburgh compound B positron emission tomography, and clinical assessments. We calculated rates of whole brain and hippocampal atrophy, ventricular enlargement, amyloid accumulation, and cognitive decline. Over 3 years, rates of whole brain atrophy (p < 0.001), left and right hippocampal atrophy (p = 0.001, p = 0.023), and ventricular expansion (p < 0.001) were associated with baseline β-amyloid load. Whole brain atrophy rates were also independently associated with β-amyloid accumulation over the first 18 months (p = 0.003). Acceleration of left hippocampal atrophy rate was associated with baseline β-amyloid load across the cohort (p < 0.02). We provide evidence that rates of atrophy are associated with both baseline β-amyloid load and accumulation, and that there is presymptomatic, amyloid-mediated acceleration of hippocampal atrophy. Clinical trials using rate of hippocampal atrophy as an outcome measure should not assume linear decline in the presymptomatic phase

    Differential hippocampal shapes in posterior cortical atrophy patients: A comparison with control and typical AD subjects.

    Get PDF
    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by predominant visual deficits and parieto-occipital atrophy, and is typically associated with Alzheimer's disease (AD) pathology. In AD, assessment of hippocampal atrophy is widely used in diagnosis, research, and clinical trials; its utility in PCA remains unclear. Given the posterior emphasis of PCA, we hypothesized that hippocampal shape measures may give additional group differentiation information compared with whole-hippocampal volume assessments. We investigated hippocampal volume and shape in subjects with PCA (n = 47), typical AD (n = 29), and controls (n = 48). Hippocampi were outlined on MRI scans and their 3D meshes were generated. We compared hippocampal volume and shape between disease groups. Mean adjusted hippocampal volumes were ∼8% smaller in PCA subjects (P < 0.001) and ∼22% smaller in tAD subject (P < 0.001) compared with controls. Significant inward deformations in the superior hippocampal tail were observed in PCA compared with controls even after adjustment for hippocampal volume. Inward deformations in large areas of the hippocampus were seen in tAD subjects compared with controls and PCA subjects, but only localized shape differences remained after adjusting for hippocampal volume. The shape differences observed, even allowing for volume differences, suggest that PCA and tAD are each associated with different patterns of hippocampal tissue loss that may contribute to the differential range and extent of episodic memory dysfunction in the two groups. Hum Brain Mapp, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc

    Firms' Main Market, Human Capital and Wages

    Get PDF
    Recent international trade literature emphasizes two features in characterizing the current patterns of trade: efficiency heterogeneity at the firm level and quality differentiation. This paper explores human capital and wage differences across firms in that context. We build a partial equilibrium model predicting that firms selling in more-remote markets employ higher human capital and pay higher wages to employees within each education group. The channel linking these variables is firms’ endogenous choice of quality. Predictions are tested using Spanish employer-employee matched data that classify firms according to four main destination markets: local, national, European Union, and rest of the World. Employees’ average education is increasing in the remoteness of firm’s main output market. Market–destination wage premia are large, increasing in the remoteness of the market, and increasing in individual education. These results suggest that increasing globalization may play a significant role in raising wage inequality within and across education groups

    Learning in anticipation of reward and punishment: perspectives across the human lifespan

    Get PDF
    Learning to act to receive reward and to withhold to avoid punishment has been found to be easier than learning the opposite contingencies in young adults. To what extent this type of behavioral adaptation might develop during childhood and adolescence and differ during aging remains unclear. We therefore tested 247 healthy individuals across the human life span (7-80 years) with an orthogonalized valenced go/no-go learning task. Computational modeling revealed that peak performance in young adults was attributable to greater sensitivity to both reward and punishment. However, in children and adolescents, we observed an increased bias toward action but not reward sensitivity. By contrast, reduced learning in midlife and older adults was accompanied by decreased reward sensitivity and especially punishment sensitivity along with an age-related increase in the Pavlovian bias. These findings reveal distinct motivation-dependent learning capabilities across the human life span, which cannot be probed using conventional go/reward no-go/punishment style paradigms that have important implications in lifelong education

    Beyond Zeno: Approaching Infinite Temperature upon Repeated Measurements

    Get PDF
    The influence of repeated projective measurements on the dynamics of the state of a quantum system is studied in dependence of the time lag τ\tau between successive measurements. In the limit of infinitely many measurements of the occupancy of a single state the total system approaches a uniform state. The asymptotic approach to this state is exponential in the case of finite Hilbert space dimension. The rate characterizing this approach undergoes a sharp transition from a monotonically increasing to an erratically varying function of the time between subsequent measurements

    Concordance of CSF measures of Alzheimer's pathology with amyloid PET status in a preclinical cohort: A comparison of Lumipulse and established immunoassays

    Get PDF
    INTRODUCTION: We assessed the concordance of cerebrospinal fluid (CSF) amyloid beta (Aβ) and tau measured on the fully automated Lumipulse platform with pre-symptomatic Alzheimer's disease (AD) pathology on amyloid positron emission tomography (PET). METHODS: In 72 individuals from the Insight 46 study, CSF Aβ40, Aβ42, total tau (t-tau), and phosphorylated tau at site 181 (p-tau181) were measured using Lumipulse, INNOTEST, and Meso Scale Discovery (MSD) assays and inter-platform Pearson correlations derived. Lumipulse Aβ42 measures were adjusted to incorporate standardization to certified reference materials. Logistic regressions and receiver operating characteristics analysis generated CSF cut-points optimizing concordance with 18F-florbetapir amyloid PET status (n = 63). RESULTS: Measurements of CSF Aβ, p-tau181, and their ratios correlated well across platforms (r 0.84 to 0.94, P < .0001); those of t-tau and t-tau/Aβ42 correlated moderately (r 0.57 to 0.79, P < .0001). The best concordance with amyloid PET (100% sensitivity and 94% specificity) was afforded by cut-points of 0.075 for Lumipulse Aβ42/Aβ40, 0.087 for MSD Aβ42/Aβ40 and 17.3 for Lumipulse Aβ42/p-tau181. DISCUSSION: The Lumipulse platform provides comparable sensitivity and specificity to established CSF immunoassays in identifying pre-symptomatic AD pathology

    Using florbetapir positron emission tomography to explore cerebrospinal fluid cut points and gray zones in small sample sizes

    Get PDF
    INTRODUCTION: We aimed to assess the feasibility of determining Alzheimer's disease cerebrospinal fluid (CSF) cut points in small samples through comparison with amyloid positron emission tomography (PET). METHODS: Twenty-three individuals (19 patients, four controls) had CSF measures of amyloid beta (Aβ)1-42 and total tau/Aβ1-42 ratio, and florbetapir PET. We compared CSF measures with visual and quantitative (standardized uptake value ratio [SUVR]) PET measures of amyloid. RESULTS: Seventeen of 23 were amyloid-positive on visual reads, and 14 of 23 at an SUVR of ≥1.1. There was concordance (positive/negative on both measures) in 20 of 23, of whom 19 of 20 were correctly classified at an Aβ1-42 of 630 ng/L, and 20 of 20 on tau/Aβ1-42 ratio (positive ≥0.88; negative ≤0.34). Three discordant cases had Aβ1-42 levels between 403 and 729 ng/L and tau/Aβ1-42 ratios of 0.54-0.58. DISCUSSION: Comparing amyloid PET and CSF biomarkers provides a means of assessing CSF cut points in vivo, and can be applied to small sample sizes. CSF tau/Aβ1-42 ratio appears robust at predicting amyloid status, although there are gray zones where there remains diagnostic uncertainty

    Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Get PDF
    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions

    NiftyPET: A high-throughput software platform for high quantitative accuracy and precision PET imaging and analysis

    Get PDF
    We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coeffi- cient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data
    corecore