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Abstract  
 

Learning to act to receive reward and to withhold to avoid punishment has been found to 

be easier than learning the opposite contingencies in young adults. To what extent this 

type of behavioral adaptation might develop during childhood and adolescence and differ 

during aging remains unclear. We therefore tested 247 healthy individuals across the 

human lifespan (7-80 years) with an orthogonalized valenced go/no-go learning task. 

Computational modeling revealed that peak performance in young adults was 

attributable to greater sensitivity to both reward and punishment. However, in children 

and adolescents, we observed an increased bias towards action but not reward sensitivity. 

In contrast, reduced learning in midlife and older adults was accompanied by decreased 

reward sensitivity and especially punishment sensitivity along with an age-related 

increase in the Pavlovian bias. These findings reveal distinct motivation-dependent 

learning capabilities across the human lifespan, which cannot be probed using 

conventional go/reward no-go/punishment style paradigms that have important 

implications in life-long education. 
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Introduction 
 

Flexible instrumental learning is required to adapt behavior towards maximizing reward 

and minimizing punishment. A number of studies have shown that its success critically 

depends on whether reward or avoidance of punishment is paired with action or 

inhibition of action, respectively. When using a go/no-go task that independently 

dissociates, i.e. orthogonalizes, action and valence, young adults demonstrate striking 

asymmetry in instrumental learning – signals that predict reward are prepotently 

associated with behavioral activation, whereas signals that predict punishment are 

intrinsically coupled to behavioral inhibition (Guitart-Masip et al., 2012b; Cavanagh et al., 

2013, Chowdhury et al., 2013b; Guitart-Masip et al., 2014; Richter et al., 2014; Perosa et 

al., 2020). Considering previously reported differences in neural correlates of reward and 

punishment processing in children and adolescents (van Duijvenvoorde et al., 2008) as 

well as in elderly adults (Samanez-Larkin et al., 2007; Schott et al., 2007; de Boer et al., 

2017), it is crucial to consider both developmental and aging effects on this flexible but 

also biased behavior for the formulation of comprehensive instrumental learning theories 

and for lifelong education. 

 

Valence may interact with action and bias performance at two different time points in our 

task. Anticipated value may bias action selection such that positive valence promotes 

action and negative valence promotes inhibition. This is a Pavlovian mechanism and the 

observed effect in our task is termed a Pavlovian bias (Huys et al., 2011, Guitart-Masip et 

al., 2012b; Geurts et al., 2013). Valence can also interact with action during outcome 

processing resulting in boosted or reduced learning after a rewarded actions or punished 

inaction, which would be considered an instrumental mechanism (Swart et al., 2017) 

referred to here as an instrumental learning bias. Both mechanisms have found support 

in previous studies (Cavanagh et al., 2013, Chowdhury et al., 2013b; Guitart-Masip et al., 

2013; Richter et al., 2014; Swart et al., 2017; de Boer et al., 2019; Perosa et al., 2020). 

Learning success in this go/no-go task requires flexibility, inhibition, and the ability to use 

feedback and to detect reward contingencies. All of these abilities may critically rely on 

prefrontal cortex (PFC)-dependent executive functions, which develop during 

adolescence but also decline in older age (Kray et al., 2004; Zelazo et al., 2004). Whilst 

most of the studies to date using the aforementioned task have investigated young adults, 

little attention has focused on how the processes underlying instrumental learning and 
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potential conflict with Pavlovian mechanisms may change across the lifespan. Previous 

work has reported age-related differences in Pavlovian and instrumental learning biases 

(Chowdhury et al., 2013b; de Boer et al., 2019; Perosa et al., 2020), but it has not been 

investigated yet whether differences already occur during midlife. Considering the other 

end of the lifespan, it is further unclear to what extent age-related differences in the 

Pavlovian bias reflect effects of maturation versus senescence. The inclusion of children 

and adolescents can help to resolve this open question.  

 

It has been widely stated that adolescents are highly sensitive to reward, which may 

contribute to increased risky behavior during this developmental period (Casey et al., 

2008). However, it has also been suggested that this reward sensitivity may be adaptive 

by promoting learning and exploration — critical for transition into adulthood (Spear, 

2000; Casey, 2015). A recent study demonstrated that adolescents learn to preferentially 

seek rewards rather than to avoid punishments, whereas young adults learn both 

behaviors equally well (Davidow et al., 2016). However, previous studies have not 

dissociated reward sensitivity from action learning, and it remains thus unclear if this 

interpretation may be confounded by action requirements or to what extent changes in 

reward sensitivity may influence the strength of coupling between action and valence. 

This is particularly relevant in light of differential functional and anatomical development 

of limbic regions, such as the striatum and cognitive control regions during adolescence 

(Blakemore and Robbins, 2012; Shulman et al., 2016). Such asymmetrical development 

may translate into differential Pavlovian and instrumental strategies used by children and 

adolescents compared to those employed in adulthood and may have important 

implications in neurodevelopmental disorders such as attention deficit hyperactivity 

disorder (Kuo and Liu, 2019).  

 

The human brain also undergoes substantial change during normal aging, which has been 

associated with numerous cognitive changes (Bäckman et al., 2006; Lindenberger, 2014). 

However, it is not known how age-related differences in Pavlovian and instrumental 

control mechanisms may impact behavioral inflexibility in older adults or whether such 

age-related changes are already evident in midlife adulthood – an age range mostly 

neglected in aging studies. Previous work has shown that administration of the dopamine 

precursor L-DOPA enhances the Pavlovian influence of potential reward (Rutledge et al., 

2015) and may restore reward prediction errors in old age (Chowdhury et al., 2013a). 
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Coupled with the known age-related decline in the integrity of the dopaminergic system 

(Karrer et al., 2017), a loss of functional dopamine may lead to a decrease in Pavlovian 

control in older age. Alternatively, previous studies have shown that the PFC is involved 

in overcoming the Pavlovian bias in young adults (Guitart-Masip et al., 2012b; Cavanagh 

et al., 2013). Thus, decreased functionality of the PFC as a result of normal aging could 

also lead to increased Pavlovian biases in older adults.   

 

The objective of this study was to explore how acquisition of optimal/adaptive behavioral 

choices is differentially altered across the lifespan in 247 healthy participants (age 7-80 

years) using an established go/no-go task that orthogonalizes action and valence. In 

addition, we used computational modeling to investigate different parameterizations on 

each subject’s behavior to assess how Pavlovian and instrumental biases influence flexible 

learning across the lifespan and vary with age.  

 

Materials and Methods 
 

Participants 

247 individuals between 7 to 80 years of age participated in the current study. Overall, 

the sample consisted of 111 females (44,9%) and 136 males (55,1%). It was ensured 

either by a standardized telephone interview or personal clinical interview that none of 

the participants were affected by a present or past neurological or psychiatric illness, 

alcohol or drug abuse, or were using centrally acting medication. Cognitive abilities were 

explicitly assessed in children, adolescents and older adults (> 60 years) to ascertain they 

had intact global cognitive performance (for details see SI Materials and Methods). Adult 

participants were only included if they had finished compulsory education (minimum 12 

years). All participants received detailed oral and written information about the study and 

gave written consent. For minors, informed consent from children and adolescents as well 

as their parents was required for participation. The study was approved by the local ethics 

committee of the University of Magdeburg, Faculty of Medicine, and followed the ethical 

standards of the Declaration of Helsinki. 

 

 

 

Task and Procedure 



6 

 

All participants performed a previously established valenced go/no-go probabilistic 

learning task (Guitart-Masip et al., 2012b). Participants had to learn through trial and 

error, which of four fractal cues, preceding an easy visual target detection task, indicated 

the need (1) to respond to obtain a monetary reward (go to win), (2) to respond to avoid 

a monetary loss (go to avoid losing), (3) to withhold a response to obtain a monetary 

reward (no-go to win) and (4) to withhold a response to avoid a monetary loss (no-go to 

avoid losing) (see Figure 1). After display of the fractal cue (1000 ms), participants were 

presented with the target detection task (1500 ms). During the visual target detection 

task, participants were presented with a circle either on the right or left side of the screen 

and had to decide whether they should indicate (go) the target side or refrain from 

pressing a button (no-go). For the go conditions, they had to press a button indicating the 

side of the target within 2000 ms. Following the circle, participants obtained one of the 

following feedbacks (1000 ms): a green up-pointing arrow indicating a win (30 cent in 

children and adolescents or 50 cent in the adult groups), a red down-pointing arrow 

indicating a loss of 30/50 cents, or a yellow horizontal bar representing neither win nor 

loss. Feedback was probabilistic, thus, in the win conditions 80% of correct choices and 

20% of incorrect choices were rewarded. In the lose conditions, 80% of correct choices 

and 20% of incorrect choices successfully avoided loss. Participants were informed and 

instructed about the probabilistic nature of the task beforehand. 

 

 

Figure 1: Probabilistic monetary go/no-go task. Participants had to learn over the course 

of 60 trials per condition, which fractal image was associated with responding or 

withholding a response to achieve a successful outcome (win or avoid losing). Responses 
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indicated whether the circle presented after the fractal was located on the right or left 

side. Correct feedback was only provided in 80% of the trials. Abbreviations: ITI – inter-

trial interval. Figure adopted from Richter et al., 2014. 

 

The task consisted of 240 trials (60 trials for each of the four conditions, presented in a 

randomized fashion in four runs) and lasted approximately 35 minutes. Before the task, 

participants were asked to complete 10 practice trials in which only the target detection 

circles were presented to familiarize themselves with the appropriate buttons on the 

computer keyboard and to obtain an overall feel for the speed of the task without 

exposure to any of the fractal cues used in the main task. The possible win/loss per trial 

for adults was 0,50 €. Children and adolescents received a slightly lower reward (0.30 

Euro) to limit the maximum cumulative amount of money they could gain on completion 

of the task (children/adolescents: 21.60 Euro vs. adults 36 Euro). Moreover, 

reimbursement and the final reward were given in the form of gift vouchers (5 €) for a 

local shopping center in line with our previous studies and recommendations from the 

local Ethics committee on how to provide age-appropriate level reimbursement for school 

children. Adults received the exact amount they won or maximum of 25 Euro on 

completion of the task whereas for children and adolescents, earnings were rounded to 5 

or max 10 Euro gain. Stimuli were presented and responses recorded using the Cogent 

2000 toolbox running on MATLAB (Version 2009b; Mathworks). 

  

Behavioral data analysis   

To inspect and visualize trajectories of performance measures and modeling parameters 

across age, smooth curves were fitted via locally estimated scatterplot smoothing (LOESS) 

using the loess function in R (R Core Team, 2020) with a smoothing span of α = .75 and a 

polynomial degree of k = 2. Visualizations of the LOESS curves were created via the ggplot 

package (Wickham, 2016). 

For the behavioral data analysis, SPSS Advanced Statistics v26 (IBM Corporation, Armonk, 

NY, USA) was used. Initially, we assessed whether a Pavlovian bias could be detected in 

the sample. Thus, mean accuracy rates (percentage of correct responses, %) were 

analyzed in a two-factorial ANCOVA for repeated measures with the factors action (go vs. 

no-go) and valence (win vs. avoid losing). Since gender distributions were not uniform 

across age, gender was included as a covariate of no interest.  
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To analyze differential age effects on overall performance and acquisition in the four 

conditions go to win (GoW), go to avoid losing (GoL), no-go to win (NoGoW), no-go to avoid 

losing (NoGoL), we performed polynomial regression analyses employing fits with linear 

and quadratic models. In detail, we calculated whether mean accuracy and learning gain 

(mean accuracy over the last 30 trials – mean accuracy over the first 30 trials) in all four 

conditions could be predicted by age. To account for multiple testing (n = 8, a Holm-

Bonferroni correction was applied to p (change)-values. 

 

Reinforcement learning models 

We fitted choice behavior to a set of six nested reinforcement learning (RL) models 

incorporating different RL hypothesis. The base model was a Q-learning algorithm 

(Sutton and Barto, 1998) that used a Rescorla-Wagner update rule to independently track 

the action value of each choice given each fractal image (Qt(go) and Qt(nogo)), with a 

learning rate (𝜀) as a free parameter. In the model, the probability of choosing one action 

on trial t was a sigmoid function of the difference between the action values scaled by a 

slope parameter that was parameterized as sensitivity to reward. This basic model was 

initially augmented with an irreducible action noise parameter also known as a lapse rate 

(𝜉) (Talmi et al., 2008) and then further expanded by adding a static bias parameter to the 

value of the go action (b). Note that the parameterization of the irreducible noise 

parameter implies that higher values are associated with lower irreducible noise. Hence 

this parameter can be interpreted as a lapse rate. The model was then augmented by 

adding a fixed Pavlovian value of 1 to the value of the go action as soon as the first reward 

was encountered for win cues, and a fixed Pavlovian value of -1 to the value of the go 

action as soon as the first punishment was encountered for loss cues. This fixed Pavlovian 

value was weighted by a further free parameter (Pavlovian parameter) into the value of 

the go action (𝜋). Note that this definition of the Pavlovian value is different from the 

definition in previous studies that have used this task (Guitart-Masip et al., 2012b; 

Cavanagh et al., 2013; de Boer et al., 2019), as model comparison demonstrated it a better 

fit than a variable Pavlovian value updated on a trial-by-trial basis (see Table 1). The state 

(action-independent) values for each fractal image were updated on every trial using a 

Rescorla-Wagner update rule with the same learning rate as the update of the action 

values. Finally, the model including the static action bias and the Pavlovian bias were 

augmented by including different sensitivities for reward and punishment. Full equations 

and a description of all considered models are provided in the Supplemental Information. 
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Model fitting procedure and comparison 

As in previous reports (Huys et al., 2011, Guitart-Masip et al., 2012b) we used a 

hierarchical Type II Bayesian (or random effects) procedure using maximum likelihood 

to fit simple parameterized distributions for higher-level statistics of the parameters. 

Since the values of parameters for each subject are ‘hidden’, this employs the Expectation-

Maximization (EM) procedure. For each iteration, the posterior distribution over the 

group for each parameter is used to specify the prior over the individual parameter fits 

on the next iteration. All six computational models were fit to the data using a single 

distribution for all participants. This fitting procedure was, therefore, blind to the 

existence of different groups with putatively different parameter values. During the fitting 

procedure, all parameters except the action bias were suitably transformed to enforce 

constraints (exponential transform for sensitivity to reward and punishment and 

Pavlovian parameter and sigmoid transforms for learning rate and irreducible noise). 

These constraints are enforced to ensure stability of the model fitting as recommended 

by Daw 2010. The learning rate and the irreducible noise parameters are fractional step 

sizes and naturally range between 0 and 1; numbers below 0 are meaningless, and 

numbers above 1 render the estimation of the model unstable. Similarly, negative values 

of the sensitivity to reward, the sensitivity to punishment, and the Pavlovian parameter 

are logically implausible. Six modeling parameters were extracted for each individual, 

namely sensitivity to reward, sensitivity to punishment, Pavlovian bias, action bias, learning 

rate and irreducible noise.  

Models were compared using the integrated Bayesian Information Criterion (iBIC) as 

previously described (Huys et al., 2011, Guitart-Masip et al., 2012b). Small iBIC values 

indicate a model that fits the data better after penalizing for the number of data points 

associated with each parameter. Comparing iBIC values is akin to a likelihood ratio test 

(Kass and Raftery, 1995). Note that the iBIC penalizes those versions of the model fit that 

use four distributions for each parameter.  Finally, we assessed age-related effects on all 

modeling parameters using polynomial regression analyses employing fits with linear 

and quadratic models. Holm Bonferroni-correction (p< 0.05 for 6 tests) was used to 

correct for effects of multiple comparisons. 

 

Data and Code availability statements 
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The data and code used to support the findings of this study are available from the 

corresponding authors upon reasonable request. 

 
Results 
 

Pavlovian bias 

Across the entire sample, participants showed superior performance in the go conditions 

(main effect action: F1,244 = 26.618, p < .001). However, the significant interaction of action 

x valence (F1,244 = 14.009, p < .001) revealed the well-described Pavlovian bias, namely 

that performance in the go conditions was higher when a reward was expected (go to win 

< go to avoid losing, t246 = 10.453, p < .001), whereas the prospect to avoid a loss led to 

better performance in the no-go conditions  (no-go to win < no-go to avoid losing, t246 = -

7.817, p < .001). No significant interactions with gender were observed (all p ≥ 0.5). Figure 

2 shows the Pavlovian Bias and its trajectory across the lifespan. 

 

 

 

Figure 2: Left: Mean overall accuracy (%) with 95% confidence intervals across 

conditions indicating a Pavlovian bias during learning (GoW > GoL and NoGoW < NoGoL, 

***p<0.001); Right: Trajectories of overall accuracy (%) for all conditions plotted as a 

function of age. Smooth curves fitted using locally estimated scatterplot smoothing 

(LOESS) are shown with 95% confidence interval. Abbreviations: GoW, go to win; GoL, go 

to avoid losing; NoGoW, no go to win; NoGoL, no go to avoid losing.  

 

Age related effects on performance accuracy  

In a first step, we looked at the four conditions separately (see Figure 3 and Table 1 upper 

parts): performance in the go conditions decreased linearly with age, both for go to win 
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(F(1,245) = 7.716, p = .006) and go to avoid losing (F(1,245) = 55.018, p < .001). In 

contrast, performance in the no-go conditions showed a non-linear (quadratic) 

relationship with age, that is, rising steeply during childhood and adolescence, peaking in 

young adulthood and then showing a continuous age-related decrease in midlife and older 

adults (no go to win: F(1,244) = 12.149, p < .001; no go to avoid losing: F(1,244) = 17.96, p 

< .001). 

Considering increments in performance from the first to the second half of trials (learning 

gain, see bottom rows of Figure 3 and Table 1), we observed no age effects for the go 

conditions. In the no-go to win condition, learning gain was higher in children and 

adolescents as well as young adults and decreased linearly with age (F(1,245) = 8.834, p 

= .003). Learning gain in the no-go to avoid losing condition, however, showed a moderate 

non-linear/quadratic association with age (F(1,244) = 7.720, p = .001), showing a slight 

age-related increase up to midlife and subsequent age-related decrease in older age. 

 

 

Figure 3: Mean performance of each participant across all conditions. Smooth curves 

using LOESS are shown with 95% confidence intervals: Upper row: Mean accuracy (%). 

Bottom row: Learning gain: mean accuracy (%) last 30 trials – mean accuracy (%) first 30 
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trials. Abbreviations: GoW, go to win; GoL, go to avoid losing; NoGoW, no go to win; NoGoL, 

no go to avoid losing. 

 

For completeness, age effects on reaction times for go to win and go to avoid losing 

responses as well as inverse efficiency scores (i.e. RT/performance accuracy) are 

reported in the supplementary information (SI Figure 1). Their interpretation warrants 

caution as participants were explicitly instructed to respond accurately, while speed was 

not emphasized. Reaction times showed a highly significant quadratic association with 

age (GoW: F(1,244) = 58.289, p < .001, GoL: F(1,244) = 59.699, p < .001) as was the case 

for the inverse efficiency for go to win (F(1,244) = 23.161, p < .001), indicating that young 

adults showed faster responses (steep increase during childhood and adolescence) and a 

lower speed-accuracy trade off. For inverse efficiency scores in the go to avoid losing 

condition, a significant linear association with age was observed (F(1,245) = 31.567, p < 

.001) 

 

Table 1: Association of accuracy measures with age 
 Linear Quadratic 

R² (change) p (change) R² (change) p (change) 

Accuracy 

 

GoW .031 .006 .001 .540 

GoL .183 <.001 .017 .023 

NoGoW .007 .189 .084 <.001 

NoGoL .020 .025 .108 <.001 

Learning 

gain 

GoW .009 .138 .001 .563 

GoL .001 .629 .019 .029 

NoGoW .035 .003 .003 .394 

NoGoL .020 .028 .040 .001 

Results that survived Holm-Bonferroni correction are shown in bold print. 
 

 

Parameterizing learning and biases using computational modeling  

To identify instrumental and Pavlovian components of the observed asymmetry during 

learning, six nested reinforcement learning (RL) models were fitted to the behavioral data 

(see SI Materials and Methods), using the expectation maximization approach as 

previously described (Huys et al., 2011, Guitart-Masip et al., 2012b). All six computational 
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models were fit to the data using a single distribution for all participants. This fitting 

procedure was, therefore, blind to the existence of different groups with putatively 

different parameter values. Our computational modeling approach demonstrated that the 

marked asymmetry in learning (i.e. superior performance in go to win and no-go to avoid 

losing compared to go to avoid losing and no-go to win) could be attributed to an 

interaction between instrumental and Pavlovian control mechanisms (Guitart-Masip et 

al., 2012b). The best account of the data was provided by the model including a static 

action bias, Pavlovian bias, reward and punishment sensitivity, learning rate and an 

irreducible noise parameter (see Table 2 and SI Figure 2) consistent with previous studies 

using this task (Guitart-Masip et al., 2012b; Cavanagh et al., 2013; Guitart-Masip et al., 

2014; Perosa et al., 2020). 

 

Table 2: Integrated Bayesian Information Criterion (iBIC) for all tested models 

Model no. Model parameters No. of 
parameters 

Likelihood Pseudo-R2 iBIC 

1 ε, ρ 2 -28166 0.32 56,376 

2 ε, ρ, ξ 3 -27977 0.32 56,019 

3 ε, ρ, ξ, b 4 -25653 0.38 51,394 

4 ε, ρwin, ρlose, ξ, b 5 -25064 0.39 50,239 

5 ε, ρwin, ρlose,  ξ, b, πfluct 6 -24680 0.40 49,493 

6 ε, ρwin, ρlose,  ξ, b, πconstant 6 -24519 0.41 49,170 

The winning model statistics are highlighted in bold font: , learning rate; ρwin, 
weighting of reward on win trials; ρlose, weighting of punishments on lose trials; b, go 
bias; π, Pavlovian bias; ξ, irreducible noise. iBIC, integrated Bayesian information 
criterion. Smaller values indicate a better model fit. 
 

 

Age-related effects on modeling parameters 

Parameters indicative of instrumental learning such as reward sensitivity (F(1,244) = 

9.773, p < .001) and punishment sensitivity (F(1,244) = 19.084, p < .001) both followed an 

inverted U-shaped distribution across the lifespan (see upper parts of Figure 4 and Table 

3). An age-related increase in reward and punishment sensitivity was observed during 

childhood and adolescence, peaking during young adulthood followed by an age-related 

decrease in midlife and older adults. In contrast, no significant association between 

learning rate and age across the lifespan was observed. 

Moreover, we found a nonlinear/quadratic association between age and action bias 

(F(1,244) = 9.389, p < .001; see lower parts of Figure 4 and Table 3) showing that 
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associative learning in children and adolescents was driven by an action bias that 

attenuated in young and midlife adults and recurred in older age. The modeling approach 

also revealed a significant linear association between the Pavlovian bias and age (F(1,245) 

= 6.270, p < .013) indicating that associative learning is more influenced by the Pavlovian 

bias with increasing age. For the irreducible noise parameter, we observed a significant 

linear association with age (F(1,245) = 8.854, p < .003) whereby values were highest in 

young adults and lowest in older adults demonstrating younger adults’ performance was 

more tightly captured by the winning model. 

 

 

 

Figure 4: Modeled behavioral performance across the lifespan. Modeling parameters 

derived from the winning model are plotted as smooth curves using LOESS and are shown 

with 95% confidence intervals. 

 

 
Table 3: Association of modeling parameters with age 

 Linear Quadratic 

R² 

(change) 

p 

(change) 

R² 

(change) 

p 

(change) 
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Modeling 

parameters 

Reward 

sensitivity 

.048 .001 .026 .009 

Punishment 

sensitivity 

.060 <.001 .075 <.001 

Learning rate .003 .419 .018 .036 

Action bias .019 .029 .052 <.001 

Pavlovian bias .025 .013 .000 .967 

Irreducible 

noise 

.035 .003 .011 .088 

Results that survived Holm-Bonferroni correction are shown in bold print. 
 
 
Discussion 
 

In this study we have demonstrated, that individual performance in a valenced go/no-go 

task across the lifespan (7-80 years) is influenced by Pavlovian biases. Furthermore, the 

ability to successfully orthogonalize action and valence was characterized by an inverted 

U-shape distribution with peak performance observed in young adults. Computational 

modeling revealed that superior performance in younger adults compared to all other age 

groups was attributable to a greater sensitivity to outcomes (both to reward and 

punishment) coupled with a relatively low action bias. In contrast, lower performance in 

children and adolescents was attributable to an increased bias towards action and 

reduced reward and punishment sensitivity compared to young adults. In midlife and older 

adults, an age-related decline in performance was attributable to a decrease in reward 

sensitivity and especially punishment sensitivity and age-related increase in the Pavlovian 

bias. Taken together, our results demonstrate that age-related decline in motivated 

performance does not mirror the pattern observed in children and adolescents, but 

instead reflects qualitatively distinct alterations. Our study thus reveals novel age-related 

discrepancies that could not be probed using classical go/reward no-go/punishment style 

paradigms.  

 

This study set out to investigate the influence of Pavlovian biases on instrumental learning 

responses coupled to action and valence using a go/no-go task. Our results revealed that 

all participants exhibited an influence of Pavlovian control whereby they were better at 

initiating an action to gain a reward (go to win) compared to punishment (go to avoid 
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losing) but also withdrawing an action to avoid punishment (no-go to avoid losing) 

compared to gaining a reward (no-go to win). The striking asymmetry in performance 

across conditions observed here is consistent with previous studies using the same task 

(Guitart-Masip et al., 2012b; Cavanagh et al., 2013, Chowdhury et al., 2013b; Guitart-Masip 

et al., 2014; Richter et al., 2014; de Boer et al., 2019; Perosa et al., 2020). Furthermore, 

computational modeling in young adults has previously shown this pattern of behavior 

can be captured by a model incorporating a Pavlovian bias, where the strength of this bias 

is related to impaired learning of the conflicting conditions: no-go to win and go to avoid 

losing (Guitart-Masip et al., 2012b). Here we extend this work by demonstrating that the 

same model can effectively capture learning behavior across the human lifespan. 

Interestingly, we observed a significant age-related increase in the Pavlovian bias in older 

age providing evidence for age-differential Pavlovian control. However we also show that 

performance is influenced by age-related differences in the ability of the instrumental 

system to learn the appropriate choice (go or no-go) for each fractal image, as observed 

by significant age-related decreases in reward and punishment sensitivity but not learning 

rate in older age.  

  

While children and adolescents demonstrated Pavlovian responding consistent with all 

other age groups, we observed an underlying preference for action, that is for go 

responses regardless of valence, which is at odds with the prevalent view that there is an 

overall increase in reward sensitivity during adolescence (for reviews see Galvan, 2010; 

Walker et al., 2017). Instead, our results rather suggest that this is only true for rewards 

coupled to action. In fact, our computational modeling analysis revealed that children and 

adolescents showed lower rather than higher reward sensitivity when compared to 

younger adults. As this is the first study to our knowledge to dissociate or orthogonalize 

action and valence during motivated learning in children and adolescents, our results 

raise the possibility that increased reward sensitivity reported in previous studies 

(Galvan et al., 2006; Van Leijenhorst et al., 2010; Somerville et al., 2011; Palminteri et al., 

2015; Peeters et al., 2017) might actually be attributable to a preference for action 

responses, which were coupled to positive outcomes. When considering these 

implications, it becomes evident that, in the light of our findings, it is important to control 

for action tendencies when investigating reward learning in children and adolescents. 

Previous work in young adults using the same go/no-go task has shown that activity in 

inferior frontal gyrus (IFG), a region known to be involved in action inhibition (Aron et al., 
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2014), is associated with no-go learning and successful instrumental control (Guitart-

Masip et al., 2012b). Considering the previously described protracted development of 

prefrontal projections to subcortical regions (Ziegler et al., 2017), we tentatively suggest 

that lower PFC-dependent top-down regulation of the striatal reward system may 

contribute to the increased action bias in children and adolescents.  

 

In older adults, we found poorer overall performance in all task conditions, but also a 

considerably reduced ability to learn the stimulus-response associations across trials 

when compared to young adults. A study by Schott et al., (2007) suggested that, compared 

to young adults, older adults exhibited profoundly reduced mesolimbic activation during 

reward anticipation, although did activate the ventral striatum during reward feedback. 

Similarly, Chowdhury et al., (2013a) demonstrated that older adults do not show a 

representation of expected value in the ventral striatum when performing a probabilistic 

reward learning under basal conditions and that an expected value representation was 

only observed after boosting the dopaminergic system with L-DOPA. Furthermore, older 

adults performing a probabilistic reward learning task show an attenuation of value 

anticipation in the ventromedial prefrontal cortex (vmPFC) that predicts performance in 

the probabilistic learning task (de Boer et al., 2017). These findings suggest that whilst 

general reward processing may be intact in older adults, they are impaired in learning the 

predictive value of probabilistic reward cues. In fact, previous studies have shown that 

reduced learning in older adults is associated with deficits in the integration and updating 

of reward information when rewards are uncertain and delivered from probabilistic 

outcomes (Eppinger et al., 2008; Hämmerer et al., 2011). Additionally, Samanez-Larkin et 

al., (2007) showed a particularly strong age-related impairment of ventral striatal loss 

anticipation in older adults. Taken together, these findings are compatible with our 

current observation of decreased instrumental learning in older adults, which was 

attributable to an age-related decrease in reward and particularly punishment sensitivity 

in the learning model.  

 

A striking finding in our data is that the impairment of the instrumental learning in older 

adults was especially manifest as decreased performance in the go conditions. The 

dopamine system is involved in generating active motivated behavior (Niv et al., 2007; 

Salamone and Correa, 2012) and instrumental learning through reward-prediction errors 

(Schultz, 2010). Dopamine depletion leads to decreased motor activity and/or reduced 
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motivation to seek rewards (Palmiter, 2008; Salamone and Correa, 2012). Similarly, 

previous findings using a variant of the same go/no-go task have shown that L-DOPA 

administration invigorated instrumental responding regardless of valence (Guitart-Masip 

et al., 2012a). Therefore, an age-related decline in dopaminergic function as previously 

described (Bäckman et al., 2006; Karrer et al., 2017), could modulate motivation or vigor 

of actions independently of valence and may explain the overall decrease in go 

performance observed in older compared to younger adults.  

 

Determining the impact of an aging dopaminergic system on performance in the valenced 

go/no-go task is not straightforward. Most previous studies support the notion that 

dopamine facilitates the action by valence interaction during learning (see however 

Guitart-Masip et al., 2014). A study investigating a genetic variant linked to dopamine D2 

receptor expression also highlights a modulatory role for genetic variability within the 

dopaminergic system in individual learning differences of action-valence interactions 

(Richter et al., 2014). Another study has shown that boosting dopamine with 

methylphenidate increases the action by valence interaction in participants with high 

working memory capacity, a proxy for higher dopamine synthesis capacity (Swart et al., 

2017). Finally, a recent PET imaging study has shown that the strength of the action by 

valence interaction scales with the availability of dopamine D1 receptors in the dorsal 

striatum independent of age (de Boer et al., 2019). Based on this evidence, one would have 

predicted a decreased Pavlovian bias in older age. However, learning the correct 

contingencies of the orthogonalized go/no-go task may critically rely on high-level 

cognitive functions, thus lifespan differences reported here may also relate to 

interindividual differences in working memory and long-term memory. These cognitive 

functions may also be compromised as a result of age-related decline in grey and white 

matter integrity (Draganski et al., 2011; Samanez-Larkin et al., 2012, Chowdhury et al., 

2013b; Callaghan et al., 2014; Acosta-Cabronero et al., 2016; Steiger et al., 2016; van de 

Vijver et al., 2016; Perosa et al., 2020) which may influence the ability of the instrumental 

system to learn the task contingencies as indexed by  reward and punishment sensitivity. 

Therefore, the effect of decreased dopamine function on the strength of the Pavlovian 

system may be shadowed by the effects of an age-related decrease in executive functions 

or instrumental abilities related to structural decline.  

 

The significant age-related increase in the Pavlovian bias observed in this study is at odds 
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with previous aging studies using the same task that either reported no age-related 

differences in the Pavlovian bias (Perosa et al., 2020) or that age-related differences in 

choice behavior were better accounted for by an instrumental bias instead of a Pavlovian 

bias (de Boer et al., 2019). Taken together, these findings would suggest that there is 

substantial heterogeneity in the strength of the Pavlovian bias that cannot be entirely 

accounted for by age. Thus, it will be interesting in future work to determine how age-

related differences in instrumental biases also influence action-valence learning across 

the human lifespan.  

 

Finally, some important limitations should be considered on interpretation of these 

findings. In the present study we can only infer developmental and age-related differences 

from cross-sectional data. These effects should not be assumed to represent underlying 

causal relationships, nor can we comment on lifespan trajectories. Future longitudinal 

studies will be needed to address these questions. With regard to modeling age-related 

differences in choice behavior, the irreducible noise parameter was unexpectedly 

markedly reduced in midlife compared to younger and older adults indicating that 

performance accuracy during this age range was less tightly captured by the winning 

Pavlovian model. Hence we cannot rule out that the effects in midlife/older adults may in 

part be related to a selection bias. 

 

Conclusions 

 
Our results demonstrate a dichotomy between prepotent biases that influence learning at 

either end of the lifespan with a predominant preference for action responses in 

children/adolescents compared to reduced instrumental learning from both reward and 

punishment and increased reliance on Pavlovian heuristics in older age. Collectively, our 

results emphasize the importance of orthogonally manipulating action requirements and 

outcome valence to further understand instrumental learning capabilities across different 

stages of the human lifespan. Such characteristics may underline important evolutionary 

conserved mechanisms i.e. heightened action learning in adolescents necessary to 

facilitate active exploration and independence into adulthood or alternatively adaptation 

to maintain decision-making abilities despite declining learning ability in old age.  
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