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Abstract Introduction: We aimed to assess the feasibility of determining Alzheimer’s disease cerebrospinal
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fluid (CSF) cut points in small samples through comparison with amyloid positron emission tomog-
raphy (PET).
Methods: Twenty-three individuals (19 patients, four controls) had CSF measures of amyloid beta
(Ab)1–42 and total tau/Ab1–42 ratio, and florbetapir PET. We compared CSF measures with visual
and quantitative (standardized uptake value ratio [SUVR]) PET measures of amyloid.
Results: Seventeen of 23 were amyloid-positive on visual reads, and 14 of 23 at an SUVR of �1.1.
There was concordance (positive/negative on both measures) in 20 of 23, of whom 19 of 20 were
correctly classified at an Ab1–42 of 630 ng/L, and 20 of 20 on tau/Ab1–42 ratio (positive�0.88; nega-
tive �0.34). Three discordant cases had Ab1–42 levels between 403 and 729 ng/L and tau/Ab1–42 ra-
tios of 0.54–0.58.
Discussion: Comparing amyloid PET and CSF biomarkers provides a means of assessing CSF cut
points in vivo, and can be applied to small sample sizes. CSF tau/Ab1–42 ratio appears robust at pre-
dicting amyloid status, although there are gray zones where there remains diagnostic uncertainty.
� 2015 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Molecular biomarkers are increasingly used to improve
diagnostic accuracy in Alzheimer’s disease (AD) [1]. In
AD, cerebrospinal fluid (CSF) amyloid beta (Ab)1–42 and
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Ab1–42/Ab1–40 ratio are reduced, and total tau/Ab1–42 ratio
and phosphorylated tau (p-tau) both elevated [2]. For these
continuous measures to be used diagnostically, dichoto-
mized cut points are often used to define individuals as
“AD-positive” or “AD-negative.” Determining such cut
points in vivo is not straightforward. It is rarely feasible to
seek autopsy confirmation of the presence/absence of AD
pathology close to the time of CSF sampling, as has been
done for amyloid positron emission tomography (PET)
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[3,4]. CSF is typically calibrated against clinical conversion
to AD dementia, or in patients versus controls. However, a
clinical diagnosis of AD is inaccurate in a proportion of
cases [5], and a proportion of apparently healthy elderly in-
dividuals have CSF changes consistent with AD [6]. There is
considerable between-center variability in CSF assays, and
results can be influenced by sample handling [7]. Finally,
although dichotomization may be helpful diagnostically, a
single cut point is unlikely to be biologically plausible and
requires a trade-off between sensitivity and specificity.
Perhaps as a result of these factors, CSF biomarker cut points
vary widely between centers [8].

Several studies have used data-driven analyses to deter-
mine optimal cut points, with one recent large study report-
ing tau/Ab1–42.0.52 to be the single best discriminator [9],
but such approaches are dependent on large sample sizes,
usually derived from several centers. How best to determine
cut points in individual centers, where recruiting large co-
horts is impractical, is less clear. One approach is to compare
CSF with other AD molecular biomarkers, such as amyloid
PET, now licensed but not yet widely used in routine clinical
practice. Visual assessment of F18 florbetapir amyloid PET
correlates closely with Ab deposition at autopsy [3].
Fibrillar Ab load can be quantified, usually as a standardized
uptake value ratio (SUVR) of cortical regions of interest to a
reference region (e.g., cerebellum). Previous studies have
shown CSF and florbetapir amyloid measures to have similar
diagnostic sensitivities [10]. CSFAb1–42 and florbetapir PET
SUVRs correlate closely, particularly at the mid-range of
values where cut points are likely to lie [11,12]; and
comparisons between the two have been used to assess
potential cut points in a large cohort of patients with mild
cognitive impairment (MCI) [13]. We aimed to assess
whether comparing CSF and PET biomarkers might provide
a means of determining local CSF cut points in relatively
small, clinically diverse samples.
2. Methods

We recruited 23 individuals: 19 patients with a range of
dementia syndromes and four healthy controls. As part of
their clinical evaluation, each had a diagnostic lumbar punc-
ture, with CSF samples obtained using a 22G Quincke nee-
dle. Optimum CSF handling and transfer procedures were
used [14]. Each sample was analyzed for Ab1–42, total tau,
and p-tau using INNOTEST enzyme-linked immunosorbent
assays (Fujirebio, Ghent, Belgium). Although not in routine
clinical use at our center, we also measured Ab1–40. We pref-
erentially chose individuals with CSFAb1–42 levels in a po-
tential border zone range of 400–700 pg/mL. Each patient’s
cognition was assessed using the Addenbrook’s Cognitive
Examination III, scored out of 100 [15].

Each patient had an F18 florbetapir PET scan on a
Siemens 3-T PET/MR unit, with a 50-minute dynamic
acquisition commencing immediately after intravenous in-
jection of 370MBq of florbetapir. Avolumetric T1-weighted
MRI scan was acquired concurrently. Attenuation correction
was performed using synthetic computed tomographies
(CTs) generated from the MR images [16]. A single static
PET image, reconstructed from the last 10 minutes of the
PET acquisition, was used for the analysis. PET images
were registered to the MRI and segmented using a semiauto-
mated parcellation tool [17].

The four age-matched healthy controls previously had a
florbetapir PET/CT scan as part of another study, with a
separate T1-weighted MRI acquisition. These images were
processed in the same way as described previously,
excluding the generation of synthetic CTs. Clinical studies
were approved by the Queen Square Research Ethics
Committee.

PET images were analyzed in two ways. First, three
trained nuclear medicine physicians blinded to the clinical
diagnosis visually rated the images positive/negative accord-
ing to clinical criteria [3]. Second, an SUVR was calculated
by comparing uptake in six predefined cortical regions [3] to
the whole cerebellum. A positive/negative SUVR cutoff of
1.10 was used as described [18].

Statistical analyses were performed in STATA version
12.0 (College Station, TX, USA). Independent of clinical
diagnosis, we compared CSF Ab1–42, Ab1–42/Ab1–40, tau/
Ab1–42, and p-tau in subjects rated amyloid positive/negative
on visual reads, and based on SUVR. Linear regression was
used to assess the relationship between CSF and SUVR, co-
varying for the interval between lumbar puncture and PET. A
secondary analysis compared amnestic and nonamnestic AD
clinical syndromes for each of the CSF biomarkers.
3. Results

Patients and controls were well matched for age
(63.7 6 7.6 vs. 62.9 6 7.0). Nine patients had amnestic
and 10 nonamnestic (five posterior cortical atrophy, four pro-
gressive aphasia, and one behavioral) clinical syndromes
(Table 1). CSF examination was done before scanning,
with a median delay of 145 days (range, 32–427). Across
all subjects, CSF Ab1–42 ranged from 343 to 1199 ng/L,
tau/Ab1–42 0.11–2.54, and p-tau 14–227 g/L.

Seventeen of 23 participants were rated as amyloid-
positive on visual assessment. SUVRs ranged from 0.87 to
1.66. At an SUVR cutoff of 1.10, 14 of 23 were amyloid-
positive. Comparing SUVR and clinical reads, 20 were
concordant (14 positive, six negative); and three discordant
(Fig. 1, Table 2). The discordant group all had positive am-
yloid reads, negative SUVRs (0.88, 1.05, and 1.03), and tau/
Ab ratios between 0.54 and 0.58.

The SUVR correlated with CSF Ab1–42 (R2 5 0.26,
P 5 .013), CSF Ab1–42/Ab1–40 (R

2 5 0.32, P 5 .033), CSF
tau/Ab1–42 (R2 5 0.47, P , .001), and CSF p-tau
(R2 5 0.34, P 5 .005), with no evidence for an influence
of duration between CSF sampling and scanning.

At a CSF tau/Ab1–42 ratio cut point of 0.52 [9], the sensi-
tivity and specificity for a positive amyloid scan based on



Table 1

Clinical details for each of the 19 patients

Patient

ID

Age at

LP

Clinical

presentation

IWG-2

criteria

Coexisting

pathology

ACE-III

score

1 67.9 PCA Atypical No 31

2 59.5 PCA Atypical No 67

3 67.6 PPA (logopenic) Atypical No 30

4 63.0 Amnestic — No 86

5 60.0 PPA (logopenic) Atypical No 40

6 61.2 AD (t) Typical No 62

7 69.0 PCA Atypical Mild SVD 58

8 80.0 Amnestic Typical No 86

9 70.9 Frontal Atypical No 54

10 57.9 PPA (logopenic) — No 93

11 67.0 PCA Atypical No 61

12 64.9 Amnestic Typical No 86

13 57.9 Amnestic Typical No 24

14 59.3 Amnestic Typical No 45

15 79.7 PCA Atypical Positive VGKC 69

16 56.5 Amnestic Typical No 49

17 57.1 Amnestic Typical No 31

18 51.7 Amnestic Typical No 64

19 58.9 PPA—nonfluent Atypical No 70

Abbreviations: ACE-III, Addenbrook’s Cognitive Examination III; PCA,

posterior cortical atrophy; PPA, primary progressive aphasia; AD, Alz-

heimer’s disease; SVD, small vessel disease; VGKC, voltage-gated potas-

sium channel complex antibodies.

NOTE. For the two patients who were florbetapir negative (on visual

read), and so do not satisfy criteria for AD, the IWG-2 column is marked

with a2.
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visual reads were 100% (95% confidence interval, 80–100)
and 100% (54.1–100), respectively; and based on SUVR,
82% (57–96) and 100% (54–100).

Of the patients whowere florbetapir positive onvisual read
(and hence satisfy International Working Group 2 [IWG-2]
criteria for AD), there was no significant age difference be-
tween the typical (amnestic) AD cases and the atypical (non-
amnestic) AD cases (64.3 6 5.1 vs. 63.8 6 10.6). When
comparing the two subgroups for each CSF biomarker, there
were no significant differences, although trend significance
was reached for p-tau (P5 .092), which was higher in typical
AD (91.6 6 63.4 ng/L) compared with atypical AD
(55.7 6 15.3 ng/L; Fig. 2).
4. Discussion

As more centers use CSF examination in the investiga-
tion of cognitive impairment, local validation of cut points
becomes increasingly necessary. Our results show that
combining amyloid biomarkers may be a useful means of
establishing such cut points. As shown in previous studies
[12,19], there was good correlation between CSF and PET
measures of Ab, noting that we selected individuals in the
mid-range of values where linear associations are more
likely [11]. When comparing the two methods for deter-
mining amyloid positivity, there were some discordant
cases—it is not clear whether these reflect misreading by
experts, errors in the methodology to calculate the SUVRs,
that the SUVR cut point is incorrect [20], or true biological
uncertainty. It is notable that in two of the three cases with
positive clinical reads but negative SUVR, the latter was
close to the cut off of 1.10 (1.03 and 1.05, respectively)
and that more consistent relationships between PET amy-
loid load and CSF were observed using the visual reads.

Considering only individuals with concordant positive/
negative PET clinical reads and SUVRs, there was almost
complete separation (19 of 20 correctly classified) at a
CSF Ab1–42 of 630 ng/L and there was perfect separation
on tau/Ab1–42 ratio (positive: �0.88, negative: �0.34),
Ab1–42/Ab1–40 ratio (positive: �0.13, negative: �0.14 ng/
L), and p-tau (positive: �49, negative: �40 ng/L). A CSF
Ab1–42 cutoff of w630 ng/L is very similar to those pro-
posed by other recent studies [13,21] and our results are
consistent with a previously determined optimal tau/Ab1–
42 cut point [9], supporting the use of this methodology to
produce valid cut points in small samples.

Although the concordant cases produced relatively clear
cut points, the three discordant cases showed considerable
overlap between the positive/negative ranges for Ab1–42
(403–729 ng/L) and p-tau (26–49 ng/L). The tau/Ab1-42 ra-
tios for all three cases were remarkably similar, and in a
“gray zone” between 0.54 and 0.58, very close to the previ-
ously proposed optimal cut off (0.52) [9]. Although a tau/
Ab1–42 ratio of 0.52 had very good sensitivity/specificity
for determining amyloid status, these results suggest that
rather than a strict dichotomy, introducing a gray zone
(e.g., 0.5–0.6) might be more appropriate. However, the
significantly narrower gray zone for tau/Ab1–42 than for
the other CSF measures assessed is consistent with previous
findings that this is likely to be the most robust marker for
underlying AD pathology [9,22]. Ab1–42/Ab1–40 has until
now been used less commonly in clinical practice than the
other markers but does appear to potentially provide more
precise separation of AD-positive and AD-negative cases
compared with Ab1–42 alone [23]. However, the overlap in
Ab1–42/Ab1–40 values between the PET concordant and
PET discordant groups would suggest, consistent with find-
ings from other studies [9], that Ab1–42/Ab1–40 may not be as
reliable a marker as tau/Ab1–42.

The gold standard for setting cut points to dichotomize
any surrogate biomarker of a continuous biological vari-
able would be to calibrate the cut points against direct
measurements of the pathologic entity in question; in
this case, brain amyloid and tau. However, the only avail-
able method of directly measuring these proteins in the
brain is to perform an autopsy. Collecting CSF in a cohort
of end-of-life patients to then validate postmortem is not
straightforward, and it is unlikely to be feasible to collect
sufficient numbers of samples in a relevant time frame in
any individual center. In the absence of postmortem path-
ologic confirmation of diagnosis, we, like a number of
other centers, have previously tried to determine individ-
uals with AD or non-AD pathology based on clinical diag-
nosis, and defined cut points accordingly [9]. However, the
clinical diagnosis of AD is known to be unreliable [5],



Fig. 1. Distribution of CSF values for (A) Ab1–42, (B) tau/Ab1–42, (C) Ab1–42:Ab1–40, and (D) p-tau. Participants have been split, depending on the result of both

visual PET read and PET SUVR in to either concordant (2/2) (both PEToutcomes negative), discordant (1/2) (one PEToutcome positive and one negative),

or concordat (1/1) (both PEToutcomes positive). Patients are represented by black points, with controls in white. Abbreviations: CSF, cerebrospinal fluid; Ab,

amyloid beta; p-tau, phosphorylated tau; PET, positron emission tomography; SUVR, standardized uptake value ratio.
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particularly in clinically atypical syndromes, which can be
caused by a number of different distinct underlying pathol-
ogies [24,25]. An alternative approach has been to measure
CSF degenerative markers in individuals with MCI and
then follow-up individuals to find the cut points separating
those who do and do not convert to dementia [9]. However,
this approach requires large numbers of patients followed
over several years making it not feasible for single centers;
furthermore, it addresses a related but slightly different
clinical questions, i.e., the determination of amyloid-
positive individuals versus controls or individuals with
non-AD MCI rather than between individuals with AD
and non-AD dementias. The unreliability of clinical diag-
Table 2

CSF measurements of Ab1–42, tau/Ab1–42, Ab1–42/Ab1–40, and p-tau

n Ab1–42 (ng/L) range Tau/

Positive visual read 17 343–729 0.54

Negative visual read 6 630–1199 0.11

SUVR positive 14 343–633 0.88

SUVR negative 9 403–1199 0.11

Concordant positive 14 343–633 0.88

Discordant 3 403–729 0.54

Concordant negative 6 630–1199 0.11

Abbreviations: CSF, cerebrospinal fluid; Ab, amyloid beta; p-tau, phosphorylated

ratio.

NOTE. Patients are divided based on (1) a positive/negative visual PET read, (2)

is concordancy or discordancy between the two different PET results.
nosis, combined with the variation in assays used, is likely
to contribute to the very significant differences between
centers with regard to the cut points they use, as exempli-
fied in a recent multicenter study where individual centers’
cut points for CSF Ab1–42 varied by over 400 ng/L, from
192 ng/L to 638 ng/L [8]. These differences may also be
compounded by the fact that there is no perfect statistical
method for determining cut points, which in the absence
of a gold-standard with which to compare is inevitably a
trade-off between sensitivity and specificity [26]. Unlike
CSF measurements, amyloid PET has been validated
against postmortem data [3,4]. Comparing local CSF cut
points against a validated in-vivo measure of AD pathology,
Ab1–42 range Ab1–42/Ab1–40 range p-tau (ng/L) range

–2.54 0.06–0.13 26–227

–0.34 0.14–0.28 14–40

–2.54 0.06–0.13 49–227

–0.58 0.08–0.28 14–49

–2.54 0.06–0.13 49–227

–0.58 0.08–0.10 26–49

–0.34 0.14–0.28 14–40

tau; PET, positron emission tomography; SUVR, standardized uptake value

a positive/negative PET SUVR (using a cutoff of 1.10), and (3) whether there



Fig. 2. Box plots comparing clinically typical (i.e., amnestic) and clinically atypical cases for (A) CSFAb1–42, (B) Ab1–42/Ab1–40, (C) tau/Ab1–42, and (D) p-tau.

Abbreviations: CSF, cerebrospinal fluid; Ab, amyloid beta; p-tau, phosphorylated tau; AD, Alzheimer’s disease.
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such as amyloid PET, is, therefore, likely to provide more
robust cut points than using clinical diagnoses alone, without
the necessity for postmortem examination. The findings of
the study have contributed to a change in CSF cut points at
our center.

All amyloid-positive individuals in our study had de-
mentia, thus fulfilling IWG-2 criteria for AD [27]. The
criteria also allow for patients to be divided according to
their clinical presentation in to either typical (amnestic)
or atypical (nonamnestic) subgroups. Our study includes a
relatively even mixture of typical and atypical cognitive
syndromes (Table 1); and in those with biomarker evidence
for AD, a mixture of those with IWG-2 typical and atypical
AD. When comparing the amnestic and nonamnestic AD
cases, there was no evidence of any difference in CSF Ab
or total tau (Fig. 2). There was a suggestion of higher p-
tau in typical AD compared with atypical AD, although
this only reached trend significance. Although given the
small numbers in each of the subgroups, any comparisons
should be interpreted with caution; this finding is, however,
consistent with previous work performed in larger samples
[28]. When assessing all participants together, the p-tau cut
point we determined (described previously) is somewhat
lower than typically used, perhaps reflecting that a signifi-
cant proportion of our patients had atypical, nonamnestic
presentations.

This study has a number of limitations. The sample size
is small, although in keeping with our aim to assess
methods for determining cut points in samples appropriate
for single centers. There were in some cases significant
delays between the CSF and PET scan, although there
was no evidence that this influenced the relationship be-
tween the two measures; and pragmatically, the fact that
delays of some months between CSF and PET do not
have a significant influence means that applying this
approach in other clinical centers is more feasible. All
the patients were scanned on the same PET/MR unit,
whereas the controls were scanned on a PET/CT. However,
all the controls were very clearly and consistently amyloid
negative based on visual read, SUVR, and Ab1–42, suggest-
ing that this is unlikely to have influenced results; and a
previous large study has demonstrated excellent concor-
dance between SUVR measurements made in different
centers and pipelines [11]. Finally, although amyloid PET
correlates well with postmortem pathologic findings,
without autopsy confirmation, the true amyloid burden
for the individuals in this study is unknown.
5. Conclusions

Comparing amyloid PET and CSF biomarkers pro-
vides a means of assessing CSF cut points in vivo, and
can be applied to small sample sizes. Although in un-
equivocal cases, a CSF Ab1–42 cut point of w630 ng/L
and tau/Ab1–42 ratio of w0.52 provide good group sepa-
ration, these data provide evidence that incorporating
biomarker gray zones (e.g., 0.5–0.6 for tau/Ab1–42 ratio)
may be more biologically plausible.
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RESEARCH IN CONTEXT

1. Systematic review: The authors used PubMed to re-
view the literature pertaining to cerebrospinal fluid
(CSF) cut points and, in particular, (1) what methods
have been used to determine cut points and (2) what
the optimum cut points are thought to be.

2. Interpretation: Our results demonstrate the value of
comparing CSF and positron emission tomography
biomarkers in relatively small cohorts to assess local
CSF cut points. In keeping with previous studies, the
tau:amyloid beta1–42 ratio was found to be the most
robust CSF measure. Although cut points have utility
in clinical practice, these data show that in some cases
there may be discordance, suggesting the need for
biomarker gray zones to reflect diagnostic uncertainty.

3. Future directions: Replication of our approach to
determine CSF cut points in other centers will pro-
vide further validation. Other future studies should
aim to further assess and quantify CSF biomarker
gray zones to improve understanding of how best to
incorporate these in to clinical practice.
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