461 research outputs found

    Contribution of murine IgG Fc regions to antibody binding to the capsule of Burkholderia pseudomallei.

    Get PDF
    Immunoglobulin G3 (IgG3) is the predominant IgG subclass elicited in response to polysaccharide antigens in mice. This specific subclass has been shown to crosslink its fragment crystallizable (Fc) regions following binding to multivalent polysaccharides. Crosslinking leads to increased affinity through avidity, which theoretically should lead to more effective protection against bacteria and yeast displaying capsular polysaccharides on their surface. To investigate this further we have analyzed the binding characteristics of 2 IgG monoclonal antibody (mAb) subclass families that bind to the capsular polysaccharide (CPS) of Burkholderia pseudomallei. The first subclass family originated from an IgG3 hybridoma cell line (3C5); the second family was generated from an IgG1 cell line (2A5). When the Fc region of the 3C5 IgG3 is removed by proteolytic cleavage, the resulting F(ab')2 fragments exhibit decreased affinity compared to the full-length mAb. Similarly, when the parent IgG3 mAb is subclass-switched to IgG1, IgG2b, and IgG2a, all of these subclasses exhibit decreased affinity. This decrease in affinity is not seen when the 2A5 IgG1 mAb is switched to an IgG2b or IgG2a, strongly suggesting the drop in affinity is related to the IgG3 Fc region

    Neurospora from natural populations: Population genomics insights into the Life history of a model microbial Eukaryote

    Get PDF
    The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that brought Neurospora into the era of population genomics. We will then cover the major contributions of population genomic investigations using Neurospora to our understanding of microbial biogeography and speciation, and review recent work using population genomics and genome-wide association mapping that illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly establish Neurospora as a complete model system and we hope our review will entice biologists to include Neurospora in their research

    Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data

    Get PDF
    Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown. Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters. Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex. © 2009 Corcoran et al

    Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management

    Get PDF
    Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems

    Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production

    Get PDF
    © 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. © 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)

    Unusual cardiovascular complications of brucellosis presenting in two men: two case reports and a review of the literature

    Get PDF
    Introduction: Brucellosis is a zoonosis with worldwide distribution, which is particularly endemic in many countries of the Mediterranean basin. Cardiovascular complications of this disease, such as endocarditis, myocarditis and pericarditis, are very rare, with even fewer cases of myocarditis or asymptomatic pericardial effusion in the absence of concomitant endocarditis being reported. Case presentation: We report two cases of brucellosis in two Caucasian men, aged 17 and 34 years old, with myocarditis and asymptomatic pericardial effusion, respectively. Of note, neither patient had concomitant endocarditis. The disease was confirmed serologically and by blood cultures. Both patients recovered completely after receiving appropriate antibiotic treatment without any sign of relapse during a follow-up of 12 months. Conclusion: These two cases emphasize that in endemic areas Brucella can be considered as a potentially causative agent of idiopathic pericardial effusion or myocarditis, even in the absence of concomitant endocarditis. This possibility could be taken into account particularly in cases where contraction of brucellosis is possible, such as occupational exposure or consumption of unpasteurized dairy products. © 2011 Gatselis et al; licensee BioMed Central Ltd

    Fish as Reservoirs and Vectors of Vibrio cholerae

    Get PDF
    Vibrio cholerae, the etiologic agent of cholera, is autochthonous to various aquatic environments, but despite intensive efforts its ecology remains an enigma. Recently, it was suggested that copepods and chironomids, both considered as natural reservoirs of V. cholerae, are dispersed by migratory waterbirds, thus possibly distributing the bacteria between water bodies within and between continents. Although fish have been implicated in the scientific literature with cholera cases, as far as we know, no study actually surveyed the presence of the bacteria in the fish. Here we show for the first time that fish of various species and habitats contain V. cholerae in their digestive tract. Fish (n = 110) were randomly sampled from freshwater and marine habitats in Israel. Ten different fish species sampled from freshwater habitats (lake, rivers and fish ponds), and one marine species, were found to carry V. cholerae. The fish intestine of Sarotherodon galilaeus harboured ca. 5×103 V. cholerae cfu per 1 gr intestine content—high rates compared with known V. cholerae cfu numbers in the bacteria's natural reservoirs. Our results, combined with evidence from the literature, suggest that fish are reservoirs of V. cholerae. As fish carrying the bacteria swim from one location to another (some fish species move from rivers to lakes or sea and vice versa), they serve as vectors on a small scale. Nevertheless, fish are consumed by waterbirds, which disseminate the bacteria on a global scale. Moreover, V. cholerae isolates had the ability to degrade chitin, indicating a commensal relationship between V. cholerae and fish. Better understanding of V. cholerae ecology can help reduce the times that human beings come into contact with this pathogen and thus minimize the health risk this poses

    Suppression of FOXM1 Sensitizes Human Cancer Cells to Cell Death Induced by DNA-Damage

    Get PDF
    Irradiation and DNA-damaging chemotherapeutic agents are commonly used in anticancer treatments. Following DNA damage FOXM1 protein levels are often elevated. In this study, we sought to investigate the potential role of FOXM1 in programmed cell death induced by DNA-damage. Human cancer cells after FOXM1 suppression were subjected to doxorubicin or γ-irradiation treatment. Our findings indicate that FOXM1 downregulation by stable or transient knockdown using RNAi or by treatment with proteasome inhibitors that target FOXM1 strongly sensitized human cancer cells of different origin to DNA-damage-induced apoptosis. We showed that FOXM1 suppresses the activation of pro-apoptotic JNK and positively regulates anti-apoptotic Bcl-2, suggesting that JNK activation and Bcl-2 down-regulation could mediate sensitivity to DNA-damaging agent-induced apoptosis after targeting FOXM1. Since FOXM1 is widely expressed in human cancers, our data further support the fact that it is a valid target for combinatorial anticancer therapy
    • …
    corecore