111 research outputs found

    Non-syndromic Sensorineural Prelingual Deafness: The Importance of Genetic Counseling in Demystifying Parents’ Beliefs About the Cause of Their Children’s Deafness

    Get PDF
    Recent advances in molecular genetics have allowed the determination of the genetic cause of some childhood non-syndromic deafness. In Portugal only a small proportion of families are referred to a clinical genetics service in order to clarify the etiology of the deafness and to provide genetic counseling. Consequently, there are no published studies of the prior beliefs of parents about the causes of hereditary deafness of their children and their genetic knowledge after receipt of genetic counseling. In order to evaluate the impact of genetic counseling, 44 parents of 24 children with the diagnosis of non-syndromic sensorineural prelingual deafness due to mutations in the GJB2 (connexin 26), completed surveys before and after genetic counseling. Before counseling 13.6 % of the parents knew the cause of deafness; at a post-counseling setting this percentage was significantly higher, with 84.1 % of the parents accurately identifying the etiology. No significant differences were found between the answers of mothers and fathers either before or after genetic counseling. Parents' level of education was a significant factor in pre-test knowledge. After genetic counseling 95.5 % of the parents stated that the consultation had met their expectations, 70.5 % remembered correctly the inheritance pattern, and 93.2 % correctly recalled the chance of risk of deafness. These results underline the importance of genetic counseling in demystifying parents' beliefs about the etiology of their children's deafness

    Translog, a web browser for studying the expression divergence of homologous genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing amount of data from comparative genomics, and newly developed technologies producing accurate gene expression data facilitate the study of the expression divergence of homologous genes. Previous studies have individually highlighted factors that contribute to the expression divergence of duplicate genes, e.g. promoter changes, exon structure heterogeneity, asymmetric histone modifications and genomic neighborhood conservation. However, there is a lack of a tool to integrate multiple factors and visualize their variety among homologous genes in a straightforward way.</p> <p>Results</p> <p>We introduce Translog (a web-based tool for Transcriptome comparison of homologous genes) that assists in the comparison of homologous genes by displaying the loci in three different views: promoter view for studying the sharing/turnover of transcription initiations, exon structure for displaying the exon-intron structure changes, and genomic neighborhood to show the macro-synteny conservation in a larger scale. CAGE data for transcription initiation are mapped for each transcript and can be used to study transcription turnover and expression changes. Alignment anchors between homologous loci can be used to define the precise homologous transcripts. We demonstrate how these views can be used to visualize the changes of homologous genes during evolution, particularly after the 2R and 3R whole genome duplication.</p> <p>Conclusion</p> <p>We have developed a web-based tool for assisting in the transcriptome comparison of homologous genes, facilitating the study of expression divergence.</p

    ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells through Two MicroRNAs in Arabidopsis

    Get PDF
    Stem cells are crucial in morphogenesis in plants and animals. Much is known about the mechanisms that maintain stem cell fates or trigger their terminal differentiation. However, little is known about how developmental time impacts stem cell fates. Using Arabidopsis floral stem cells as a model, we show that stem cells can undergo precise temporal regulation governed by mechanisms that are distinct from, but integrated with, those that specify cell fates. We show that two microRNAs, miR172 and miR165/166, through targeting APETALA2 and type III homeodomain-leucine zipper (HD-Zip) genes, respectively, regulate the temporal program of floral stem cells. In particular, we reveal a role of the type III HD-Zip genes, previously known to specify lateral organ polarity, in stem cell termination. Both reduction in HD-Zip expression by over-expression of miR165/166 and mis-expression of HD-Zip genes by rendering them resistant to miR165/166 lead to prolonged floral stem cell activity, indicating that the expression of HD-Zip genes needs to be precisely controlled to achieve floral stem cell termination. We also show that both the ubiquitously expressed ARGONAUTE1 (AGO1) gene and its homolog AGO10, which exhibits highly restricted spatial expression patterns, are required to maintain the correct temporal program of floral stem cells. We provide evidence that AGO10, like AGO1, associates with miR172 and miR165/166 in vivo and exhibits “slicer” activity in vitro. Despite the common biological functions and similar biochemical activities, AGO1 and AGO10 exert different effects on miR165/166 in vivo. This work establishes a network of microRNAs and transcription factors governing the temporal program of floral stem cells and sheds light on the relationships among different AGO genes, which tend to exist in gene families in multicellular organisms

    Specialization Can Drive the Evolution of Modularity

    Get PDF
    Organismal development and many cell biological processes are organized in a modular fashion, where regulatory molecules form groups with many interactions within a group and few interactions between groups. Thus, the activity of elements within a module depends little on elements outside of it. Modularity facilitates the production of heritable variation and of evolutionary innovations. There is no consensus on how modularity might evolve, especially for modules in development. We show that modularity can increase in gene regulatory networks as a byproduct of specialization in gene activity. Such specialization occurs after gene regulatory networks are selected to produce new gene activity patterns that appear in a specific body structure or under a specific environmental condition. Modules that arise after specialization in gene activity comprise genes that show concerted changes in gene activities. This and other observations suggest that modularity evolves because it decreases interference between different groups of genes. Our work can explain the appearance and maintenance of modularity through a mechanism that is not contingent on environmental change. We also show how modularity can facilitate co-option, the utilization of existing gene activity to build new gene activity patterns, a frequent feature of evolutionary innovations

    Cross species comparison of C/EBPα and PPARγ profiles in mouse and human adipocytes reveals interdependent retention of binding sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription factors peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) are key transcriptional regulators of adipocyte differentiation and function. We and others have previously shown that binding sites of these two transcription factors show a high degree of overlap and are associated with the majority of genes upregulated during differentiation of murine 3T3-L1 adipocytes.</p> <p>Results</p> <p>Here we have mapped all binding sites of C/EBPα and PPARγ in human SGBS adipocytes and compared these with the genome-wide profiles from mouse adipocytes to systematically investigate what biological features correlate with retention of sites in orthologous regions between mouse and human. Despite a limited interspecies retention of binding sites, several biological features make sites more likely to be retained. First, co-binding of PPARγ and C/EBPα in mouse is the most powerful predictor of retention of the corresponding binding sites in human. Second, vicinity to genes highly upregulated during adipogenesis significantly increases retention. Third, the presence of C/EBPα consensus sites correlate with retention of both factors, indicating that C/EBPα facilitates recruitment of PPARγ. Fourth, retention correlates with overall sequence conservation within the binding regions independent of C/EBPα and PPARγ sequence patterns, indicating that other transcription factors work cooperatively with these two key transcription factors.</p> <p>Conclusions</p> <p>This study provides a comprehensive and systematic analysis of what biological features impact on retention of binding sites between human and mouse. Specifically, we show that the binding of C/EBPα and PPARγ in adipocytes have evolved in a highly interdependent manner, indicating a significant cooperativity between these two transcription factors.</p

    High frequency of Fredrickson's phenotypes IV and IIb in Brazilians infected by human immunodeficiency virus

    Get PDF
    BACKGROUND: Human immunodeficiency virus (HIV) infection is very prevalent in Brazil. HIV therapy has been recently associated with coronary heart disease (CHD). Dyslipidemia is a major risk factor for CHD that is frequently described in HIV positive patients, but very few studies have been conducted in Brazilian patients evaluating their lipid profiles. METHODS: In the present work, we evaluated the frequency and severity of dyslipidemia in 257 Brazilian HIV positive patients. Two hundred and thirty-eight (93%) were submitted to antiretroviral therapy (224 treated with protease inhibitors plus nucleoside reverse transcriptase inhibitors, 14 treated only with the latter, 12 naive and 7 had no records of treatment). The average time on drug treatment with antiretroviral therapy was 20 months. None of the patients was under lipid lowering drugs. Cholesterol, triglyceride, phospholipid and free fatty acids were determined by enzymatic colorimetric methods. Lipoprotein profile was estimated by the Friedewald formula and Fredrickson's phenotyping was obtained by serum electrophoresis on agarose. Apolipoprotein B and AI and lipoprotein "a" were measured by nephelometry. RESULTS: The Fredrickson phenotypes were: type IIb (51%), IV (41%), IIa (7%). In addition one patient was type III and another type V. Thirty-three percent of all HIV+ patients presented serum cholesterol levels ≥ 200 mg/dL, 61% LDL-cholesterol ≥ 100 mg/dL, 65% HDL-cholesterol below 40 mg/dL, 46% triglycerides ≥ 150 mg/dL and 10% have all these parameters above the limits. Eighty-six percent of patients had cholesterol/HDL-cholesterol ratio ≥ 3.5, 22% increased lipoprotein "a", 79% increased free fatty acids and 9% increased phospholipids. The treatment with protease inhibitors plus nucleoside reverse transcriptase inhibitors increased the levels of cholesterol and triglycerides in these patients when compared with naïve patients. The HDL-cholesterol (p = 0.01) and apolipoprotein A1 (p = 0.02) levels were inversely correlated with the time of protease inhibitor therapy while total cholesterol levels had a trend to correlate with antiretroviral therapy (p = 0.09). CONCLUSION: The highly varied and prevalent types of dyslipidemia found in Brazilian HIV positive patients on antiretroviral therapies indicate the urgent need for their early diagnosis, the identification of the risk factors for CHD and, when needed, the prompt intervention on their lifestyle and/or with drug treatment

    Dissecting the Transcriptional Regulatory Properties of Human Chromosome 16 Highly Conserved Non-Coding Regions

    Get PDF
    Non-coding DNA conservation across species has been often used as a predictor for transcriptional enhancer activity. However, only a few systematic analyses of the function of these highly conserved non-coding regions (HCNRs) have been performed. Here we use zebrafish transgenic assays to perform a systematic study of 113 HCNRs from human chromosome 16. By comparing transient and stable transgenesis, we show that the first method is highly inefficient, leading to 40% of false positives and 20% of false negatives. When analyzed in stable transgenic lines, a great majority of HCNRs were active in the central nervous system, although some of them drove expression in other organs such as the eye and the excretory system. Finally, by testing a fraction of the HCNRs lacking enhancer activity for in vivo insulator activity, we find that 20% of them may contain enhancer-blocking function. Altogether our data indicate that HCNRs may contain different types of cis-regulatory activity, including enhancer, insulators as well as other not yet discovered functions

    The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of peroxisome proliferator-activated receptor (PPAR)gamma is associated with bone loss and increased fracture risk, while PPARalpha activation seems to have positive skeletal effects. To further explore these effects we have examined the effect of the PPARalpha agonists fenofibrate and Wyeth 14643, and the PPARgamma agonist pioglitazone, on bone mineral density (BMD), bone architecture and biomechanical strength in ovariectomized rats.</p> <p>Methods</p> <p>Fifty-five female Sprague-Dawley rats were assigned to five groups. One group was sham-operated and given vehicle (methylcellulose), the other groups were ovariectomized and given vehicle, fenofibrate, Wyeth 14643 and pioglitazone, respectively, daily for four months. Whole body and femoral BMD were measured by dual X-ray absorptiometry (DXA), and biomechanical testing of femurs, and micro-computed tomography (microCT) of the femoral shaft and head, were performed.</p> <p>Results</p> <p>Whole body and femoral BMD were significantly higher in sham controls and ovariectomized animals given fenofibrate, compared to ovariectomized controls. Ovariectomized rats given Wyeth 14643, maintained whole body BMD at sham levels, while rats on pioglitazone had lower whole body and femoral BMD, impaired bone quality and less mechanical strength compared to sham and ovariectomized controls. In contrast, cortical volume, trabecular bone volume and thickness, and endocortical volume were maintained at sham levels in rats given fenofibrate.</p> <p>Conclusions</p> <p>The PPARalpha agonist fenofibrate, and to a lesser extent the PPARaplha agonist Wyeth 14643, maintained BMD and bone architecture at sham levels, while the PPARgamma agonist pioglitazone exaggerated bone loss and negatively affected bone architecture, in ovariectomized rats.</p
    corecore