12 research outputs found
Leisure time physical activity in middle age predicts the metabolic syndrome in old age: results of a 28-year follow-up of men in the Oslo study
<p>Abstract</p> <p>Background</p> <p>Data are scarce on the long term relationship between leisure time physical activity, smoking and development of metabolic syndrome and diabetes. We wanted to investigate the relationship between leisure time physical activity and smoking measured in middle age and the occurrence of the metabolic syndrome and diabetes in men that participated in two cardiovascular screenings of the Oslo Study 28 years apart.</p> <p>Methods</p> <p>Men residing in Oslo and born in 1923–32 (n = 16 209) were screened for cardiovascular diseases and risk factors in 1972/3. Of the original cohort, those who also lived in same area in 2000 were invited to a repeat screening examination, attended by 6 410 men. The metabolic syndrome was defined according to a modification of the National Cholesterol Education Program criteria. Leisure time physical activity, smoking, educational attendance and the presence of diabetes were self-reported.</p> <p>Results</p> <p>Leisure time physical activity decreased between the first and second screening and tracked only moderately between the two time points (Spearman's ρ = 0.25). Leisure time physical activity adjusted for age and educational attendance was a significant predictor of both the metabolic syndrome and diabetes in 2000 (odds ratio for moderately vigorous versus sedentary/light activity was 0.65 [95% CI, 0.54–0.80] for the metabolic syndrome and 0.68 [0.52–0.91] for diabetes) (test for trend P < 0.05). However, when adjusted for more factors measured in 1972/3 including glucose, triglycerides, body mass index, treated hypertension and systolic blood pressure these associations were markedly attenuated. Smoking was associated with the metabolic syndrome but not with diabetes in 2000.</p> <p>Conclusion</p> <p>Physical activity during leisure recorded in middle age prior to the current waves of obesity and diabetes had an independent predictive association with the presence of the metabolic syndrome but not significantly so with diabetes 28 years later in life, when the subjects were elderly.</p
Cardiovascular Safety of Anagrelide in Healthy Subjects: Effects of Caffeine and Food Intake on Pharmacokinetics and Adverse Reactions
BACKGROUND: Essential thrombocythaemia (ET) is a rare clonal myeloproliferative disorder characterized by a sustained elevation in platelet count and megakaryocyte hyperplasia. Anagrelide is used in the treatment of ET, where it has been shown to reduce platelet count. Anagrelide is metabolized by cytochrome P450 (CYP) 1A2, and previous studies of the effect of food on the bioavailability and pharmacokinetics of anagrelide were conducted prior to the identification of the active metabolite, 3-hydroxyanagrelide. OBJECTIVES: The objectives of this study were to determine the effect of food and caffeine on the pharmacokinetics of anagrelide and its active metabolite, 3-hydroxyanagrelide, to monitor electrocardiogram (ECG) parameters following drug administration, and to document the relationship between palpitations, ECG changes and caffeine intake METHODS: Thirty-five healthy subjects who received 1 mg of anagrelide following either a 10-h fast or within 30 min of a standardized breakfast, including two cups of coffee, were studied. RESULTS: Time to maximum (peak) plasma concentration (C(max)) of anagrelide was 4.0 h in the fed and 1.5 h in the fasted group (p < 0.05); similar results were observed for 3-hydroxyanagrelide. The mean C(max) of anagrelide was 4.45 ± 2.32 ng/mL and 5.08 ± 2.99 ng/mL in the fed/caffeine and fasted groups, respectively; peak concentrations were higher for 3-hydroxyanagrelide in both the fed/caffeine and fasted groups. The most frequent adverse events (AEs) were headache (60 %) and palpitations (40 %). There were no serious AEs and all ECGs were normal, although significant reductions in PR interval, QRS length and QT interval were observed in both groups. Heart rate increased after anagrelide administration in both fed/caffeine and fasted states (p < 0.01); however, increased heart rate was significantly more frequent in the fed/caffeine state than in the fasted state (p < 0.001 for heart rate increase in the first hour after drug administration). There was a trend towards a greater heart rate increase in subjects reporting palpitations than in those without (mean heart rate ± SD at 1 h: 10.1 ± 6.4 vs. 8.0 ± 8.4 beats/min [p = 0.35]; at 4 h: 12.7 ± 7.5 vs. 9.1 ± 8.8 beats/min [p = 0.10], respectively). CONCLUSION: We conclude that food/caffeine delayed absorption of anagrelide. Anagrelide was generally well tolerated and had small effects on ECG parameters and heart rate. Caffeine may be implicated in a higher increase in heart rate and increased frequency of palpitations observed following administration of anagrelide with food/caffeine versus fasting
The DBP Phenotype Gc-1f/Gc-1f Is Associated with Reduced Risk of Cancer. The Tromsø Study.
In addition to its role as a transport protein, the vitamin D binding protein (DBP) may also affect lipid metabolism, inflammation and carcinogenesis. There are three common variants of the DBP, Gc1s (1s), Gc1f (1f), Gc2 (2) that result in six common phenotypes (1s/1s, 1s/1f, 1s/2, 1f/1f, 1f/2, and 2/2). These phenotypes can be identified by genotyping for the two single nucleotide polymorphisms rs7041 and rs4588 in the GC gene. The DBP variants have different binding coefficients for the vitamin D metabolites, and accordingly there may be important relations between DBP phenotypes and health.DNA was prepared from subjects who participated in the fourth survey of the Tromsø Study in 1994-1995 and who were registered with the endpoints myocardial infarction (MI), type 2 diabetes (T2DM), cancer or death as well as a randomly selected control group. The endpoint registers were complete up to 2010- 2013. Genotyping was performed for rs7041 and rs4588 and serum 25-hydroxyvitamin D (25(OH)D) was measured.Genotyping for rs7041 and rs4588 was performed successfully in 11 704 subjects. Among these, 1660 were registered with incident MI, 958 with T2DM, 2410 with cancer and 4318 had died. Subjects with the DBP phenotype 1f/1f had 23 - 26 % reduced risk of incident cancer compared to the 1s/1s and 2/2 phenotypes (P < 0.02, Cox regression with gender as covariate). Differences in serum 25(OH)D levels could not explain the apparent cancer protective effect of the DBP variant 1f. In addition to cancer and 25(OH)D, there were significant associations between DBP phenotype and body height, hip circumference and serum calcium.There are important biological differences between the common DBP phenotypes. If the relation between the DBP variant 1f and cancer is confirmed in other studies, determination of DBP phenotype may have clinical importance
Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies
BACKGROUND: Whether triglyceride-mediated pathways are causally relevant to coronary heart disease is uncertain. We studied a genetic variant that regulates triglyceride concentration to help judge likelihood of causality.
METHODS: We assessed the -1131T>C (rs662799) promoter polymorphism of the apolipoprotein A5 (APOA5) gene in relation to triglyceride concentration, several other risk factors, and risk of coronary heart disease. We compared disease risk for genetically-raised triglyceride concentration (20,842 patients with coronary heart disease, 35,206 controls) with that recorded for equivalent differences in circulating triglyceride concentration in prospective studies (302 430 participants with no history of cardiovascular disease; 12,785 incident cases of coronary heart disease during 2.79 million person-years at risk). We analysed -1131T>C in 1795 people without a history of cardiovascular disease who had information about lipoprotein concentration and diameter obtained by nuclear magnetic resonance spectroscopy.
FINDINGS: The minor allele frequency of -1131T>C was 8% (95% CI 7-9). -1131T>C was not significantly associated with several non-lipid risk factors or LDL cholesterol, and it was modestly associated with lower HDL cholesterol (mean difference per C allele 3.5% [95% CI 2.6-4.6]; 0.053 mmol/L [0.039-0.068]), lower apolipoprotein AI (1.3% [0.3-2.3]; 0.023 g/L [0.005-0.041]), and higher apolipoprotein B (3.2% [1.3-5.1]; 0.027 g/L [0.011-0.043]). By contrast, for every C allele inherited, mean triglyceride concentration was 16.0% (95% CI 12.9-18.7), or 0.25 mmol/L (0.20-0.29), higher (p=4.4x10(-24)). The odds ratio for coronary heart disease was 1.18 (95% CI 1.11-1.26; p=2.6x10(-7)) per C allele, which was concordant with the hazard ratio of 1.10 (95% CI 1.08-1.12) per 16% higher triglyceride concentration recorded in prospective studies. -1131T>C was significantly associated with higher VLDL particle concentration (mean difference per C allele 12.2 nmol/L [95% CI 7.7-16.7]; p=9.3x10(-8)) and smaller HDL particle size (0.14 nm [0.08-0.20]; p=7.0x10(-5)), factors that could mediate the effects of triglyceride.
INTERPRETATION: These data are consistent with a causal association between triglyceride-mediated pathways and coronary heart disease
Major lipids, apolipoproteins, and risk of vascular disease.
CONTEXT: Associations of major lipids and apolipoproteins with the risk of vascular disease have not been reliably quantified. OBJECTIVE: To assess major lipids and apolipoproteins in vascular risk. DESIGN, SETTING, AND PARTICIPANTS: Individual records were supplied on 302,430 people without initial vascular disease from 68 long-term prospective studies, mostly in Europe and North America. During 2.79 million person-years of follow-up, there were 8857 nonfatal myocardial infarctions, 3928 coronary heart disease [CHD] deaths, 2534 ischemic strokes, 513 hemorrhagic strokes, and 2536 unclassified strokes. MAIN OUTCOME MEASURES: Hazard ratios (HRs), adjusted for several conventional factors, were calculated for 1-SD higher values: 0.52 log(e) triglyceride, 15 mg/dL high-density lipoprotein cholesterol (HDL-C), 43 mg/dL non-HDL-C, 29 mg/dL apolipoprotein AI, 29 mg/dL apolipoprotein B, and 33 mg/dL directly measured low-density lipoprotein cholesterol (LDL-C). Within-study regression analyses were adjusted for within-person variation and combined using meta-analysis. RESULTS: The rates of CHD per 1000 person-years in the bottom and top thirds of baseline lipid distributions, respectively, were 2.6 and 6.2 with triglyceride, 6.4 and 2.4 with HDL-C, and 2.3 and 6.7 with non-HDL-C. Adjusted HRs for CHD were 0.99 (95% CI, 0.94-1.05) with triglyceride, 0.78 (95% CI, 0.74-0.82) with HDL-C, and 1.50 (95% CI, 1.39-1.61) with non-HDL-C. Hazard ratios were at least as strong in participants who did not fast as in those who did. The HR for CHD was 0.35 (95% CI, 0.30-0.42) with a combination of 80 mg/dL lower non-HDL-C and 15 mg/dL higher HDL-C. For the subset with apolipoproteins or directly measured LDL-C, HRs were 1.50 (95% CI, 1.38-1.62) with the ratio non-HDL-C/HDL-C, 1.49 (95% CI, 1.39-1.60) with the ratio apo B/apo AI, 1.42 (95% CI, 1.06-1.91) with non-HDL-C, and 1.38 (95% CI, 1.09-1.73) with directly measured LDL-C. Hazard ratios for ischemic stroke were 1.02 (95% CI, 0.94-1.11) with triglyceride, 0.93 (95% CI, 0.84-1.02) with HDL-C, and 1.12 (95% CI, 1.04-1.20) with non-HDL-C. CONCLUSION: Lipid assessment in vascular disease can be simplified by measurement of either total and HDL cholesterol levels or apolipoproteins without the need to fast and without regard to triglyceride