225 research outputs found

    Deep forecasting of translational impact in medical research.

    Get PDF
    The value of biomedical research-a $1.7 trillion annual investment-is ultimately determined by its downstream, real-world impact, whose predictability from simple citation metrics remains unquantified. Here we sought to determine the comparative predictability of future real-world translation-as indexed by inclusion in patents, guidelines, or policy documents-from complex models of title/abstract-level content versus citations and metadata alone. We quantify predictive performance out of sample, ahead of time, across major domains, using the entire corpus of biomedical research captured by Microsoft Academic Graph from 1990-2019, encompassing 43.3 million papers. We show that citations are only moderately predictive of translational impact. In contrast, high-dimensional models of titles, abstracts, and metadata exhibit high fidelity (area under the receiver operating curve [AUROC] > 0.9), generalize across time and domain, and transfer to recognizing papers of Nobel laureates. We argue that content-based impact models are superior to conventional, citation-based measures and sustain a stronger evidence-based claim to the objective measurement of translational potential

    Identification of functional differences between recombinant human α and β cardiac myosin motors

    Get PDF
    The myosin isoform composition of the heart is dynamic in health and disease and has been shown to affect contractile velocity and force generation. While different mammalian species express different proportions of α and β myosin heavy chain, healthy human heart ventricles express these isoforms in a ratio of about 1:9 (α:β) while failing human ventricles express no detectable α-myosin. We report here fast-kinetic analysis of recombinant human α and β myosin heavy chain motor domains. This represents the first such analysis of any human muscle myosin motor and the first of α-myosin from any species. Our findings reveal substantial isoform differences in individual kinetic parameters, overall contractile character, and predicted cycle times. For these parameters, α-subfragment 1 (S1) is far more similar to adult fast skeletal muscle myosin isoforms than to the slow β isoform despite 91% sequence identity between the motor domains of α- and β-myosin. Among the features that differentiate α- from β-S1: the ATP hydrolysis step of α-S1 is ~ten-fold faster than β-S1, α-S1 exhibits ~five-fold weaker actin affinity than β-S1, and actin·α-S1 exhibits rapid ADP release, which is >ten-fold faster than ADP release for β-S1. Overall, the cycle times are ten-fold faster for α-S1 but the portion of time each myosin spends tightly bound to actin (the duty ratio) is similar. Sequence analysis points to regions that might underlie the basis for this finding

    Sequence Diversities of Serine-Aspartate Repeat Genes among Staphylococcus aureus Isolates from Different Hosts Presumably by Horizontal Gene Transfer

    Get PDF
    BACKGROUND: Horizontal gene transfer (HGT) is recognized as one of the major forces for bacterial genome evolution. Many clinically important bacteria may acquire virulence factors and antibiotic resistance through HGT. The comparative genomic analysis has become an important tool for identifying HGT in emerging pathogens. In this study, the Serine-Aspartate Repeat (Sdr) family has been compared among different sources of Staphylococcus aureus (S. aureus) to discover sequence diversities within their genomes. METHODOLOGY/PRINCIPAL FINDINGS: Four sdr genes were analyzed for 21 different S. aureus strains and 218 mastitis-associated S. aureus isolates from Canada. Comparative genomic analyses revealed that S. aureus strains from bovine mastitis (RF122 and mastitis isolates in this study), ovine mastitis (ED133), pig (ST398), chicken (ED98), and human methicillin-resistant S. aureus (MRSA) (TCH130, MRSA252, Mu3, Mu50, N315, 04-02981, JH1 and JH9) were highly associated with one another, presumably due to HGT. In addition, several types of insertion and deletion were found in sdr genes of many isolates. A new insertion sequence was found in mastitis isolates, which was presumably responsible for the HGT of sdrC gene among different strains. Moreover, the sdr genes could be used to type S. aureus. Regional difference of sdr genes distribution was also indicated among the tested S. aureus isolates. Finally, certain associations were found between sdr genes and subclinical or clinical mastitis isolates. CONCLUSIONS: Certain sdr gene sequences were shared in S. aureus strains and isolates from different species presumably due to HGT. Our results also suggest that the distributional assay of virulence factors should detect the full sequences or full functional regions of these factors. The traditional assay using short conserved regions may not be accurate or credible. These findings have important implications with regard to animal husbandry practices that may inadvertently enhance the contact of human and animal bacterial pathogens

    The use of imepitoin (Pexion™) on fear and anxiety related problems in dogs – a case series

    Get PDF
    Fear and anxiety based problems are common in dogs. Alongside behaviour modification programmes, a range of psychopharmacological agents may be recommended to treat such problems, but few are licensed for use in dogs and the onset of action of some can be delayed. The low affinity partial benzodiazepine receptor agonist imepitoin (Pexion™, Boehringer Ingelheim) is licensed for treating canine epilepsy, has a fast onset of action in dogs and has demonstrated anxiolytic properties in rodent models. This case series reports on the use of imepitoin in a group of dogs identified as having fear/anxiety based problems. Twenty dogs were enrolled into the study, attended a behaviour consultation and underwent routine laboratory evaluation. Nineteen dogs proceeded to be treated with imepitoin orally twice daily (starting dose approximately 10 mg/kg, with alterations as required to a maximum 30 mg/kg) alongside a patient-specific behaviour modification plan for a period of 11–19 weeks. Progress was monitored via owner report through daily diary entries and telephone follow-up every two weeks. A Positive and Negative Activation Scale (PANAS) of temperament was also completed by owners during baseline and at the end of the study

    A prospective cohort study of surgical treatment for back pain with degenerated discs; study protocol

    Get PDF
    BACKGROUND: The diagnosis of discogenic back pain often leads to spinal fusion surgery and may partly explain the recent rapid increase in lumbar fusion operations in the United States. Little is known about how patients undergoing lumbar fusion compare in preoperative physical and psychological function to patients who have degenerative discs, but receive only non-surgical care. METHODS: Our group is implementing a multi-center prospective cohort study to compare patients with presumed discogenic pain who undergo lumbar fusion with those who have non-surgical care. We identify patients with predominant low back pain lasting at least six months, one or two-level disc degeneration confirmed by imaging, and a normal neurological exam. Patients are classified as surgical or non-surgical based on the treatment they receive during the six months following study enrollment. RESULTS: Three hundred patients discogenic low back pain will be followed in a prospective cohort study for two years. The primary outcome measure is the Modified Roland-Morris Disability Questionnaire at 24-months. We also evaluate several other dimensions of outcome, including pain, functional status, psychological distress, general well-being, and role disability. CONCLUSION: The primary aim of this prospective cohort study is to better define the outcomes of lumbar fusion for discogenic back pain as it is practiced in the United States. We additionally aim to identify characteristics that result in better patient selection for surgery. Potential predictors include demographics, work and disability compensation status, initial symptom severity and duration, imaging results, functional status, and psychological distress

    Cholesterol-Dependent Anaplasma phagocytophilum Exploits the Low-Density Lipoprotein Uptake Pathway

    Get PDF
    In eukaryotes, intracellular cholesterol homeostasis and trafficking are tightly regulated. Certain bacteria, such as Anaplasma phagocytophilum, also require cholesterol; it is unknown, however, how this cholesterol-dependent obligatory intracellular bacterium of granulocytes interacts with the host cell cholesterol regulatory pathway to acquire cholesterol. Here, we report that total host cell cholesterol increased >2-fold during A. phagocytophilum infection in a human promyelocytic leukemia cell line. Cellular free cholesterol was enriched in A. phagocytophilum inclusions as detected by filipin staining. We determined that A. phagocytophilum requires cholesterol derived from low-density lipoprotein (LDL), because its replication was significantly inhibited by depleting the growth medium of cholesterol-containing lipoproteins, by blocking LDL uptake with a monoclonal antibody against LDL receptor (LDLR), or by treating the host cells with inhibitors that block LDL-derived cholesterol egress from late endosomes or lysosomes. However, de novo cholesterol biosynthesis is not required, since inhibition of the biosynthesis pathway did not inhibit A. phagocytophilum infection. The uptake of fluorescence-labeled LDL was enhanced in infected cells, and LDLR expression was up-regulated at both the mRNA and protein levels. A. phagocytophilum infection stabilized LDLR mRNA through the 3′ UTR region, but not through activation of the sterol regulatory element binding proteins. Extracellular signal–regulated kinase (ERK) was up-regulated by A. phagocytophilum infection, and inhibition of its upstream kinase, MEK, by a specific inhibitor or siRNA knockdown, reduced A. phagocytophilum infection. Up-regulation of LDLR mRNA by A. phagocytophilum was also inhibited by the MEK inhibitor; however, it was unclear whether ERK activation is required for LDLR mRNA up-regulation by A. phagocytophilum. These data reveal that A. phagocytophilum exploits the host LDL uptake pathway and LDLR mRNA regulatory system to accumulate cholesterol in inclusions to facilitate its replication

    Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa

    Get PDF
    Background: Phylostratigraphy is a method used to correlate the evolutionary origin of founder genes (that is, functional founder protein domains) of gene families with particular macroevolutionary transitions. It is based on a model of genome evolution that suggests that the origin of complex phenotypic innovations will be accompanied by the emergence of such founder genes, the descendants of which can still be traced in extant organisms. The origin of multicellularity can be considered to be a macroevolutionary transition, for which new gene functions would have been required. Cancer should be tightly connected to multicellular life since it can be viewed as a malfunction of interaction between cells in a multicellular organism. A phylostratigraphic tracking of the origin of cancer genes should, therefore, also provide insights into the origin of multicellularity. Results: We find two strong peaks of the emergence of cancer related protein domains, one at the time of the origin of the first cell and the other around the time of the evolution of the multicellular metazoan organisms. These peaks correlate with two major classes of cancer genes, the 'caretakers', which are involved in general functions that support genome stability and the 'gatekeepers', which are involved in cellular signalling and growth processes. Interestingly, this phylogenetic succession mirrors the ontogenetic succession of tumour progression, where mutations in caretakers are thought to precede mutations in gatekeepers. Conclusions: A link between multicellularity and formation of cancer has often been predicted. However, this has not so far been explicitly tested. Although we find that a significant number of protein domains involved in cancer predate the origin of multicellularity, the second peak of cancer protein domain emergence is, indeed, connected to a phylogenetic level where multicellular animals have emerged. The fact that we can find a strong and consistent signal for this second peak in the phylostratigraphic map implies that a complex multi-level selection process has driven the transition to multicellularity

    Origami voting: a non-cryptographic approach to transparent ballot verification

    Get PDF
    International audienceOver the past four decades, fear of election manipulation and hacking has spurred the security technology community to propose a variety of voting systems to implement verifiable voting. Most of these rely on hard to understand cryptographic protocols, which can affect whether users actually verify their selections. Three-Ballot and Vote/Anti-Vote/Vote, two related systems among the few non-cryptographic end-to-end verifiable voting systems, made improvements in security while eliminating complex protocols. They unfortunately suffered from usability issues, and although they did not require cryptographic primitives, they still relied on electronic devices. To address this, we introduce three folded-paper based systems that allow verifiable voting and resist common attacks despite not relying on any cryptography or electronic devices. The proposals are based on 1) semi-translucent ballots, 2) masking tape, or 3) folding and punching. These Origami voting methods help users understand the underlying mechanisms and give them a direct geometric approach to verification

    Antibody Recognition of Cancer-Related Gangliosides and Their Mimics Investigated Using in silico Site Mapping

    Get PDF
    Modified gangliosides may be overexpressed in certain types of cancer, thus, they are considered a valuable target in cancer immunotherapy. Structural knowledge of their interaction with antibodies is currently limited, due to the large size and high flexibility of these ligands. In this study, we apply our previously developed site mapping technique to investigate the recognition of cancer-related gangliosides by anti-ganglioside antibodies. The results reveal a potential ganglioside-binding motif in the four antibodies studied, suggesting the possibility of structural convergence in the anti-ganglioside immune response. The structural basis of the recognition of ganglioside-mimetic peptides is also investigated using site mapping and compared to ganglioside recognition. The peptides are shown to act as structural mimics of gangliosides by interacting with many of the same binding site residues as the cognate carbohydrate epitopes. These studies provide important clues as to the structural basis of immunological mimicry of carbohydrates
    corecore