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THE BIGGER PICTURE The relationship of scientific activity to real-world impact is hard to describe and
even harder to quantify. Analyzing 43.3 million biomedical papers from 1990–2019, we show that deep
learningmodels of publication, title, and abstract content can predict inclusion of a scientific paper in a pat-
ent, guideline, or policy document. We show that the best of these models, incorporating the richest infor-
mation, substantially outperforms traditional metrics of paper success—citations per year—and transfers
to the task of predicting Nobel Prize-preceding papers. If judgments of the translational potential of science
are to be based on objective metrics, then complex models of paper content should be preferred over ci-
tations. Our approach is naturally extensible to richer scientific content and diverse measures of impact. Its
wider application could maximize the real-world benefits of scientific activity in the biomedical realm and
beyond.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
The value of biomedical research—a $1.7 trillion annual investment—is ultimately determined by its down-
stream, real-world impact, whose predictability from simple citation metrics remains unquantified. Here we
sought to determine the comparative predictability of future real-world translation—as indexed by inclusion in
patents, guidelines, or policy documents—from complexmodels of title/abstract-level content versus citations
andmetadata alone. We quantify predictive performance out of sample, ahead of time, across major domains,
using theentire corpusof biomedical researchcapturedbyMicrosoftAcademicGraph from1990–2019, encom-
passing 43.3 million papers. We show that citations are only moderately predictive of translational impact. In
contrast, high-dimensionalmodels of titles, abstracts, andmetadataexhibit highfidelity (area under the receiver
operatingcurve [AUROC]>0.9), generalize across timeanddomain, and transfer to recognizingpapers ofNobel
laureates. We argue that content-based impact models are superior to conventional, citation-based measures
and sustain a stronger evidence-based claim to the objective measurement of translational potential.
INTRODUCTION

Scientometrics has existed for only a small fraction of the history

of science itself, sparked by the logical empiricists of the Vienna

Circle in their philosophical quest to construct a unified language
This is an open access article und
of science.1 Developed into the familiar, citation-centered form

through arduous manual extraction in the mid-20th century,2,3

its indicators have proliferated in the Internet age. They now

dominate the research landscape, routinely informing major

funding decisions and academic staff recruitment worldwide.4–8
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The importance of the original goal has become magnified

over time: to measure scientific progress regardless of funding

or ideology, uncolored by the reputations of individuals or insti-

tutions. But the fundamental focus of its current solution—the

volume and density of discussion in print—is detached from

the ultimate, real-world objective and subject to familiar distor-

tions, such as the popularity of papers notable only for being

spectacularly wrong.9–11

These concerns are amplified in medical science, whose pri-

mary focus is notmerely knowledge but impact on patient health:

necessarily a consequence rather than a constitutive character-

istic of research activity, neither easily benchmarked nor directly

optimized. And there is no doubt that optimization is needed;

over the past 60 years, the number of new drug approvals per

unit R&D spend has consistently halved every 9 years, whereas

published medical research has doubled with the same period-

icity,12 and only 0.004% of basic research findings ultimately

lead to clinically useful treatments.13 The critical pre-requisite

for all research—funding—shows substantial randomness in its

distribution,14 enough for at least one major healthcare funder

to award grants by lottery.15 Any decision function based on

random chance, or a process demonstrably not much better

than random chance, leaves room for improvement, particularly

when commanding approximately $1.7 trillion global annual in-

vestment across the United States, Japan, South Korea, and

the European Union.16

Is this state of affairs partially caused by over-reliance on

misleading scientometrics, have we simply not found the right

metrics yet, or is the relation between scientific activity and

consequent impact opaque to objective analysis? To address

these crucial questions, we need a fully inclusive survey of

published medical research that relates its characteristics to

an independently measured translational outcome as close to

real-world impact as can be quantified. This relationship

must be explored with models of sufficient expressivity to

detect complex relations between many candidate predictive

factors beyond paper-to-paper citations. The extant literature

is largely limited to modeling keywords or simple representa-

tions of semantic content,17–21 within specific subdomains, or

comparatively restricted bibliographic databases,22–26 and

without exploration of the impact of data dimensionality and

model flexibility.

Here we provide the first comprehensive, field-wide analysis

of translational impact measured by its most widely accepted

proximal indices—patents, guidelines, or policies—based on

29 years of data from the medical field encompassing 43.3

million published papers. We quantify the ability to predict inclu-

sion in future patents, guidelines, or policies from conventional

age-normalized citation counts and compare this with the pre-

dictive fidelity of deep learning models incorporating more com-

plex features extracted from metadata, titles, and abstracts. We

evaluate the performance of the best model across time and the-

matic domain and in transfer to the task of recognizing papers of

Nobel laureates. We derive succinct, surveyable representations

of paper title and abstract content with deep autoencoding of

transformer-based text embeddings and of publication meta-

data with stochastic block models. The breadth and depth of

analysis allow us to draw strong conclusions about the compar-

ative fidelity of conventional bibliographic and novel semantic
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predictors of translational impact, with substantial implications

for research policy.

RESULTS

Citations
Over the period from January 1990 to March 2019, only 17.1

million of the 43.3 million published papers categorized as med-

ical by Microsoft Academic Graph were cited at least once. Of

these, 964,403 were included in a patent and 16,752 in a guide-

line or a policy document. Included papers were more frequently

cited, but the numbers of citations and inclusions were weakly

correlated (Pearson’s r = 0.094 for guidelines or policies, r =

0.248 for patents; Figure 1). The mean time delay from paper

publication to first patent inclusion was 4.73 years (SD 4.54;

Figure S1).

Predictive performance
A series of models was developed to investigate the relative

contribution of three data modalities—annual paper citations,

metadata only, and the combination of metadata and abstract/ti-

tle embeddings—in predicting two translational outcomes: a

paper’s inclusion in a patent or policy/guideline reference list. At-

tempting to predict inclusion in a guideline or policy document

from the traditional measure of impact—annual paper cita-

tions—yielded a mean cross-validated area under the receiver

operating curve (AUROC) of 0.766 with univariable logistic

regression (Citations-LogisticRegression) and 0.767 with an

optimized univariable multilayer perceptron (MLP) model (Cita-

tions-MLP).

In contrast, a high-dimensional model trained on metadata

and title and abstract embeddings, based on a hybrid MLP

and convolutional neural network (CNN), Full-MLP-CNN,

achieved an AUROC of 0.915 and average precision (AP) of

0.919 on unseen test data (Figure 2A). The MLP trained on only

metadata, without title or abstract embeddings (Metadata-

MLP), achieved a lower mean cross-validated AUROC of

0.882, significantly so, as judged by cross-validation confidence

intervals.

For the task of predicting patent inclusions, annual paper cita-

tions yielded a mean cross-validated AUROC of 0.756 with uni-

variable logistic regression (Citations-LogisticRegression) and

optimized univariable MLP (Citations-MLP).

A high-dimensional model trained on metadata and title and

abstract embeddings (Full-MLP-CNN) achieved a much higher

AUROCof 0.918 andAP of 0.859 on unseen test data (Figure 2B).

The MLP trained only on metadata, without title or abstract em-

beddings (Metadata-MLP), achieved a lower mean cross-vali-

dated AUROC of 0.876.

Across both tasks, a high-dimensional neural network model

trained on metadata and content embeddings substantially out-

performsmore commonly used citation basedmetrics when pre-

dicting future translational impact.

Performance over time and across research domain
To test the generalizability of the models, we must examine

sustained performance over time and across domains. For

guideline or policy documents, the high-dimensional Full-

MLP-CNN model trained only on data from 1990–2013 and



Figure 1. Relationship between paper citations and translational document inclusions

Shown are citation histograms of papers included (red) or not included (blue), plotted with semi-transparency on the same log axes, in guideline or policy

documents (top left) or patents (top right). The area of overlap is shown in purple, and the contrasting papers are all other identically filtered biomedical papers

with at least one citation.. The relationship between citation and inclusion counts for included papers is shown in binned scatterplots for guideline or policy

inclusions (bottom left) and patent inclusions (bottom right), also plotted on log axes.
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tested on out-of-sample papers published over all succeeding

4 years achieved an AUROC of 0.920 and an AP of 0.911 (non-

averaged). Crucially, there was no appreciable diminution in fi-

delity over time for individual years (Figures 3A, 3B, and S2A).

Performance was consistently good to excellent within each

of the top 8 most common domains of medicine (Figures 3C

and 3D).

An identical analysis of patent inclusions produced a similar

picture, yielding an AUROC of 0.902 and an AP of 0.606 for

out-of-sample papers published over all succeeding 4 years

(non-averaged), with no diminution over time for individual years
on AUROC but some diminution on AP (Figures 3E and 3F), likely

reflecting the correspondingly shorter time frames for realization

of any patent inclusion; papers in later years would have to be

includedwithin fewer years, leading to an artificially deflated pro-

portion of included papers and penalized specificity. Indeed, the

AUROC improved with time (Figure S2B), likely reflecting geo-

metric growth in publication numbers (doubling every 9 years),

changes in publication and citation patterns, and an increase

over time of patents in which papers may be included. Future

performance was consistently good to excellent within each of

the top 8 most common domains (Figures 3G and 3H).
Patterns 3, 100483, May 13, 2022 3
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Figure 2. Model predictive performance

(A and B) Shown are cross-validated receiver operating curves (ROCs) for the

Full-NLP-CNN model trained on metadata and title and abstract embeddings

(orange for validation, purple for held-out test) and the Metadata-MLP model

(red) and the Citation-LogisticRegression model trained on citation count per

year (blue) for guideline or policy inclusions (A) and patent inclusions (B). The

confidence intervals are ±2 SD on cross-validation.
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Data ablation studies
Rebuilding the Full-MLP-CNN models without paper-level met-

rics—paper citations, paper rank, and paper mentions—and

separately, also without attributes influenced by factors of merit

extrinsic to the paper itself—affiliation, authors, journal, and
4 Patterns 3, 100483, May 13, 2022
field—yielded slightly diminished fidelity. For guideline and pol-

icy inclusions, the paper-level metrics-ablated model achieved

an AUROC of 0.905, and the model ablated of paper-level met-

rics and extrinsic factors achieved an AUROC of 0.896. The cor-

responding values for models based on metadata only were

0.832 and 0.816. A model trained only on title-abstract embed-

dings, without any metadata at all, achieved an AUROC of

0.892 (Figure S3A). For patent inclusions, identically constrained

models yielded AUCROCs of 0.881, 0.866, 0.847, 0.813, and

0.822, respectively (Figure S3B).

Transfer to predicting papers preceding a Nobel Prize
If the high-dimensional models are capable of capturing funda-

mental features of translational impact, they may identify pa-

pers whose impact is judged by other criteria. To test for

such transfer learning, we applied our best patent model

(Full-MLP-CNN)—trained on data with Nobel Prize-preceding

papers removed and without retraining on new targets—to

the task of identifying the papers, published before the prize

was awarded, of Nobel laureates in physiology or medicine

from 1990–2019.

We identified 166 papers, 60 of which were included in pat-

ents. Strikingly, the Full-MLP-CNN model retrieved a substan-

tially higher proportion of Nobel laureate papers (103 of 166)

than Metadata-MLP (86 of 166) or Citations-LogisticRegression

(23 of 166) while retaining superior fidelity for detecting patent in-

clusions (AUROC 0.79 versus 0.73 and 0.73, respectively).

Predictors of inclusion
A complex, high-dimensional model cannot easily yield intelli-

gible weightings of predictive importance because its decision

is a highly non-linear function of a large set of input features. A

coarse indication of relative feature importance can nonethe-

less be derived from alternative architectures of lesser

flexibility. Here a boosted trees model (Metadata-AdaBoost)

was used, trained on the metadata and optimized by grid

search to similar performance as the MLP (AUROC 0.878,

guideline or policy inclusions; AUROC 0.877, patent inclu-

sions) (Tables S1A and S1B).

For guideline or policy inclusions, the rank of the paper, a

metric provided by Microsoft Academic Graph (MAG),27 reflect-

ing the eigencentrality-based ‘‘influence’’ of a paper, had the

highest feature importance, followed by the paper count, cita-

tion count, and rank of the journal in which the paper was pub-

lished. For patent inclusions, the top three features were

related to journal productivity-related metrics. The top 10

feature importances of models restricted to data before 2014

were very similar to those trained on the full time period,

although the ordering was different in the patent model, with

greater weight on citations, year, and field productivity

(Table S1B).

Deep semantic structure of titles and abstracts
Textual analysis of title or abstract content cannot easily yield an

intelligible set of predictive features as in the foregoing models.

But we can visualize the sentence-level embeddings of the title

and abstract encoded by BioBERT,28 a rich, context-aware rep-

resentation of natural language concepts tuned on biological

text, through a succinct representation generated by a deep



A

D

E F

G H

C

B Figure 3. Predictive performance in future

years and most common fields

(A–H) ROC curves (A and C) and precision-recall

curves (B and D) for the Full-MLP-CNNmodel trained

on data from 1990–2013 and tested on papers pub-

lished in the subsequent 4 years, plotted by year,

for guideline or policy inclusions and patent inclu-

sions, respectively. Also shown are ROC curves (E

and G), and precision-recall curves (F and H) for the

Full-MLP-CNN model trained on data from 1990–

2013 and tested on data from 2014–2019, plotted

by each of the top 8 most common fields, for guide-

line or policy inclusions and patent inclusions,

respectively.
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autoencoder. Represented in a two-dimensional space through

non-linear dimensionality reduction, the embeddings showed a

degree of disentanglement of clusters rich in guideline or policy

inclusions versus none (Figure 4A). This reveals intrinsic struc-

ture in the data exploited by the hybrid model to achieve the

high classification performance observed. An identical analysis

of the structure of the patent inclusion embeddings revealed a

similar intrinsic structure (Figure 4B).

Graph community structure
The similarity and dissimilarity between papers can be modeled

as a graph whose edges index the dependencies between indi-

vidual features. Hierarchically arranged distinct patterns of sim-

ilarity, the graph’s community structure, can then be revealed by

stochastic block modeling,29 here performed separately for

guideline or policy-included papers and patent-included papers,

each compared against all other papers.

Distinct communities of author, institutional, journal, and

domain features emerged across both groups (Figures 5 and

6). Overall, the community structures of papers not included

in guideline, policy or patent documents were most similar, as

indexed by pairwise comparisons of the log-normalized mutual

information of the inferred model parameters, and the commu-

nity structure of guideline- or policy-included papers was most

distinctive (Figure S4). This observation cohered with the struc-

ture of an undirected features graph, weighted by the absolute

correlation coefficient between features, that showed patent in-

clusions to be more centrally embedded within the wider

network of metadata than guideline or policy inclusions

(Figure S5).

Contrasting the effect of inclusion in the guideline or policy

group, indices related to the first author and journal were more

decisive in the included papers, whereas indices related to the

institution and journal were more decisive in the others (Fig-

ure S6A). The domains of virology, endocrinology, alternative

medicine, psychiatry, nursing, and environmental health were

also more prominent in the former and surgery, radiology,

traditional medicine, and rehabilitation in the latter. The effect

of inclusion in the patent group was most strongly manifested

in institutional indices for the included group and field indices

for the others. The contrast between domains was more striking

than in the guideline or policy model, with pharmacology espe-

cially dominant in the included group and general medical spe-

cialties in the others (Figure S6B).

The translational impact of journals
Journal impact factors—indices of the annual citation return of

an average paper—exclude patent, guideline, or policy inclu-

sions. So ranked, the top 10 journals in the medical domain

based on cited papers published between 1990 and 2019

are listed in Table 1. This corresponds to a medical domain

‘‘impact factor’’ over three decades rather than the commonly

reported annual. The equivalent ranking for guideline and pat-

ent inclusions, identically filtered, are listed in Tables 2 and 3,

respectively. In the absence of plausibly objective weighting of

policies or guidelines, this metric will be sensitive to the nu-

merosity of distinct policy documents within any given

domain, reflecting its political, regulatory, or administrative

complexity.
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DISCUSSION

We provide the first comprehensive framework for forecasting

the translation of published medical research in the form of pat-

ent, guideline or policy inclusions, reveal the community struc-

ture of translational inclusions, and compute the top translation-

ally relevant journals across biomedicine over the past three

decades.

Simple citation versus complex content metrics
We show that standard citation metrics are markedly inferior to

those derived from complex models based on more detailed de-

scriptions of published research. If objective metrics are to be

used in translational assessment, then the use of conventional

metrics is here shown to be insupportable. Our analysis sug-

gests that the problem rests not with citations but with the ex-

pressivity of any simple metric of something as constitutionally

complex as research translation. It is clear that the translational

signal is distributed through the combinatorial fabric of paper

citation networks, metadata, and content captured in titles and

abstracts. No easily interpretable scalar value could capture it.

Conversely, that surprisingly economical information about a pa-

per—its metadata, title, and abstract—can be exploited by the

right modeling architecture to yield high predictive fidelity means

that no one could argue that no objective alternative is available.

Even without full text information, we can confidently identify

large swathes of research activity unlikely to inform guidelines

or policy or to become the substrate of patents across time

and diverse subdomains. The choice now is not between subjec-

tive, qualitative assessment and simple quantitative metrics, but

includes machine learning models that are no less objective,

reproducible, and generalizable for being complex.

We cannot and do not argue that machine learning models re-

move the need for qualitative assessment, but only that the

quantitative metrics in current use could be far better. Content

parameterization of entire scientific fields, limited in existing liter-

ature to keyword analysis or word-level or simple document-

level embeddings,17–21 can be usefully extended using deep

learningmodels, such as those applied here, to capture a greater

depth of meaning from abstracts. Indeed, the clearly observed

relation between model complexity and achieved fidelity sug-

gests that modeling of the body of a paper—currently infeasible

for copyright reasons—is likely to yield still higher fidelity. The

analysis of metadata may additionally be expanded with inclu-

sion of wider dissemination scores, such as those captured in

Altmetric, which has already been examined at single-journal

scale,25 and more widely across the full Scopus database,22

for predicting paper-paper citations. This will inevitably usher

an examination of policies on the right trade-off between perfor-

mance and intelligibility that must be settled politically, not

empirically.

Possibilities and limitations of complex translational
forecasting
Our models are of direct, first-order inclusions, indifferent to the

upstream published sources a given paper itself cites. They may

be more likely to predict the translational potential of a meta-

analysis, for example, than that of any of the preceding studies

informing it. But the proposed framework can be naturally



Figure 4. t-distributed stochastic neighbor embed-

ding (t-SNE) projection in 2 dimensions of title and ab-

stract BioBERT autoencoder embeddings

(A and B) Labeled by the presence (orange) or absence (blue)

of a guideline or policy (A) or patent (B) inclusion. Note the

discernible data structure that enables accurate prediction of

inclusion but is too complex to be reduced to any small set of

characteristic features.
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Figure 5. Nested stochastic block models (SBMs) showing the community structure of the metadata of papers included in guidelines or pol-

icy versus those not included
Node size in these models corresponds to the eigencentrality of each feature, edge weight corresponds to the pairwise absolute value of the correlation co-

efficient between features, and the colours indicate community membership at the lowest hierarchy. The included class is the bottom hemifield.
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extended to second- or higher-order inclusions earlier in the cita-

tion path, weighting the cascade of information down the full

translational pathway in a principled way. For example, the cita-

tion nexus has been modeled as a graph,30 with publication-

basedmetrics as the predictive target, in evolution of established

approaches for predictive modeling of bibliographically defined

impact.31,32 The constraint on inclusion depth, among other con-

siderations, prevents naive use of our models to determine the

causal sufficiency of translation, but no one would claim that
8 Patterns 3, 100483, May 13, 2022
any metric within so complex a system could plausibly index

causality on its own. A complexmodel can also be used to distin-

guish empirical from meta-analytical papers with potentially

greater accuracy than bibliographic ‘‘article type’’ tags, weight-

ing inclusions by their empirical content.

Equally, although unethical biases can corrupt carelessly de-

signed or interpreted complexmodels, they can also be revealed

by them, where the neglected subpopulation is defined by the

complex interaction of several variables of ethical concern



Figure 6. Nested SBMs showing the community structure of the metadata of papers included in patents versus those not included
Node size in these models corresponds to the eigencentrality of each feature, edge weight corresponds to the pairwise absolute value of the correlation co-

efficient between features, and the colours indicate community membership at the lowest hierarchy. The included class is the top hemifield.

ll
OPEN ACCESSArticle
simple models are too crude to illuminate. Insisting on simple,

low-dimensional decision boundaries does not remove bias

but merely conceals it from view; complex models, correctly de-

signed and used, are not the problem here but an essential part

of the solution. A sharp distinction must be drawn between

simplicity and explainability; where a system is inherently, irre-

ducibly complex, a simple metric cannot be explanatory. The un-

precedented scale of analyzed data, drawn from the largest

open bibliographic repository in the world, limits potential distor-

tion from sampling bias; use of out-of-sample, ahead-of-time
measures of performance further strengthens generalizability.

Use of content and metadata overcomes the limits of either

used alone: highly discussed incorrect research or falsely in-

flated citation counts and major theoretic advances without

any secondary spread can be handled by a model incorporating

both inputs.

Our demonstration that a purely content-based model, shorn

of author and institutional features, is highly predictive of trans-

lational impact shows that the predictive signal does not merely

reflect institutional productivity or prestige and can be used to
Patterns 3, 100483, May 13, 2022 9



Table 1. Top 10 journals by paper citations per paper

Journal Paper citations/total papers Paper citations Total papers

Annual Review of Immunology 480.835 376,494 783

Physiological Reviews 407.457 392,789 964

Annual Review of Neuroscience 383.877 240,691 627

Psychological Bulletin 333.302 409,295 1,228

Pharmacological Reviews 318.500 210,847 662

Cell 295.994 3.229.298 10,910

Annual Review of Psychology 283.465 161,575 570

CA: A Cancer Journal for Clinicians 263.673 240,733 913

Psychological Review 262.322 247,107 942

Clinical Microbiology Reviews 250.334 239,319 956
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address ethical issues associated with reliance on metadata,

such as weighting of institutions on purely historical perfor-

mance. Any individual or institution can submit test data to the

model and independently validate predictions over time or

retrain with further, prospectively acquired data to ensure

adequate handling of future time-varying trends or extension to

other data types within MAG, such as preprints. The fidelity of

any prediction is inevitably constrained by the quality of the

data used to train the model from which it is derived; as biblio-

graphic databases improve, so should the models built on

them. Further development might also helpfully include semantic

analysis to contextualize the high-dimensional content embed-

dings, allowing further insights into emerging patterns of transla-

tional impact.

Our work builds on existing research on patent, guideline, and

policy inclusions. A ‘‘patent-paper citation index’’ has been pro-

posed to formalize science-to-technology linkages,33 and patent

inclusions have been systematically evaluated to quantify value

return on public research investments34 and used as a marker

of the technological importance of scientific papers.23 Although

it may seem that patents should precede published research, a

large study of United States patent and paper linkage found

that 60% referenced prior research.35 Patent inclusions have

therefore been explored as indicators of papers whose recogni-

tion has been delayed35 and, therefore, are an established

indicator for translational merit, especially of basic science. Simi-

larly, a focus on impact assessments has prompted analyses of

referencing patterns within cancer guidelines,36 small hand-

curated groups of guidelines,37 and, separately, policy inclu-

sions extracted by hand,24 systematic analysis of coronavirus

disease 2019 ( COVID-19) policy,26 or from Altmetric,38 although

difficulties with comprehensive data acquisition have hampered

the latter. Although one study has recently attempted to predict

combined guideline and clinical trial citations of basic research

using a small set of Medical Subject Headings term-derived fea-

tures,19 no comprehensive predictive framework for the tangible

product of scientific research, rather than trials, has been

described previously. The critique of paper citation metrics for

measuring impact is not new and has been described at length

elsewhere, but the argument can now be rigorously tested

against objective markers of translation.

Application of highly expressive language models to search-

able, comprehensive, fully digitized repositories of scientific

publications has the power to derive compact but rich represen-
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tations of research activity on which high-fidelity predictive

models can be founded. Here focused on the task of predicting

translational signals, the approach can be used to forecast many

aspects of scientific activity upstream of real-world impact. Our

work argues for a radical shift toward adoption of novel methods

for evaluation of medical research, a shift for which observed

levels of translational productivity—declining for more than half

a century—demand urgent and decisive action.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to the lead

contact, A.P.K.N. (amy.nelson@ucl.ac.uk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing, publicly available data, available by application

to MAG (https://www.microsoft.com/en-us/research/project/microsoft-

academic-graph/). Guideline and policy data are available from the Reach

project at Wellcome Data Labs (https://reach.wellcomedatalabs.org/). Code

for extracting guideline and policy references is available at https://github.

com/wellcometrust/reach. Analytic code will be made available upon reason-

able request. Any additional information required to reanalyze the data re-

ported in this paper is available from the lead contact upon reasonable

request.

Data

The dataset was downloaded from MAG, the largest and widest citation

coverage open publications database,27,39 in March 2019. It was filtered to

include medical papers, as labeled by MAG, published from January 1990 to

March 2019, with at least one paper-to-paper citation. Papers were extracted

by filtering for ‘‘Doc-Type’’ attribute ‘‘journal’’; medical papers were further iso-

lated by filtering on the ‘‘Field’’ code specific to ‘‘Medicine.’’ To extract a patent

inclusion count, papers were matched by ID to the reference list on patent en-

tries, in turn provided within MAG through the Lens database; a detailed

description of these data sources is available elsewhere.40 To extract guideline

or policy inclusion counts, papers were matched by title to a dataset kindly

provided by the Wellcome Trust, containing reference lists scraped from doc-

uments on the World Health Organization, National Institute of Clinical Excel-

lence, UNICEF, Médecins Sans Frontières, United Kingdom government, and

United Kingdom Parliament websites. A free web-based tool for guideline and

policy inclusion detection is available fromWellcome Data Labs (https://reach.

wellcomedatalabs.org/), and associated code is available (https://github.com/

wellcometrust/reach). Title matching was by a combination of fuzzy matching

and cosine similarity of term frequency-inverse document frequency vectors,

with manual cleaning of the resulting matches focused on titles with low fuzzy

matching and cosine similarity scores and shorter word counts.
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Table 2. Top 10 journals by guideline or policy inclusions per paper

Journal

Guideline or policy

inclusions/total papers Guideline or policy inclusions Total papers

Tobacco Control 0.094 3,120 3,325

Eastern Mediterranean Health Journal 0.091 282 3,090

Noise & Health 0.085 55 649

Human Resources for Health 0.084 69 824

Health Policy and Planning 0.079 157 1977

Influenza and Other Respiratory Viruses 0.061 63 1,036

Globalization and Health 0.043 29 681

PLOS Medicine 0.040 152 3,809

Bulletin of The World Health Organization 0.039 247 6,278

Trauma, Violence, & Abuse 0.038 22 574
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The full feature list extracted fromMAG is included in Table S2 and summar-

ily comprised publication year; paper citation count; paper rank; author count;

reference count; and rank, paper count, and paper citation information for the

first and last author, the first and last authors’ affiliations, the journal, and the

field. First and last authors were isolated from ordered author lists supplied

in MAG and used in place of the full author list to avoid variably sized or sparse

author feature sets, with the rationale that these authors tend to have the

largest effect on a paper. The first level of medical domain fields were ex-

tracted, 43 in total, and added as features using multiple one hot encoding.

Field names from hierarchical topic modeling were supplied in MAG,41 and

rank, a reinforcement learning estimation of dynamic eigencentrality, reflecting

a paper’s connectedness to other influential entries in the graph,42 was also

supplied in MAG. In addition to a simple paper citation count, the number of

times a paper was referenced in the text body of another paper was summed

to create a ‘‘paper mentions’’ count.

Predictive analysis

Natural language processing

Medical papers were further filtered to include those with titles and abstracts.

Sentence-level embeddings were generated for each title using BioBERT,28 a

state-of-the-art BERT language model pre-trained on biomedical corpora

comprising PubMed abstracts and PubMed Central full-text articles, in addi-

tion to general corpora comprising English Wikipedia and BooksCorpus.

BERT is a highly influential Transformer encoder, released in 2018, that is

able to learn the context of words by joint conditioning on the full sentence

rather than creating a sequential representation where context is lost with

increasing distance between words.43 The sentence-level embeddings were

derived from the output of the first (classification) token.

To create a fixed-length abstract-level embedding, we truncated the ab-

stracts to 20 sentences or zero padded where the abstract was shorter, re-

placing each sentence with its BioBERT embedding and concatenating the

array to create a 15,360-dimensional vector. The truncation threshold was
Table 3. Top 10 journals by patent inclusions per paper

Journal Patent inclusions/total p

Annual Review of Immunology 5.733

Nature Biotechnology 3.862

Protein Engineering 3.153

Pharmacological Reviews 3.045

Trends in Biotechnology 2.990

Cell 2.725

Journal of Experimental Medicine 2.293

Advanced Drug Delivery Reviews 2.167

Chemical Reviews 1.925

Transfusion Science 1.845
motivated by empirical investigation of abstract sentence count distribution

within training data; 92% of papers had 20 sentences or less (Figure S7).

This was further concatenated with the title vector, creating a 16,128-dimen-

sional representation of the title and abstract taken together.

Preprocessing

To rebalance the proportions of positive and negative target labels, the major-

ity negative class was randomly sampled without replacement; this rebalanc-

ing strategy was motivated by the abundance of data, a preference toward

fewer assumptions at the cost of poorer fit, and the desire to avoid linear over-

sampling techniques, such as synthetic minority oversampling, which have

been shown to underperform in higher dimensions.44 Papers without a title

or abstract were then removed. This led to a 1.1:1 balance of positive to nega-

tive labels in the patent group and the guideline or policy group. Data were

randomly split into label-stratified training and test sets with a 9:1 ratio. Missing

values in the metadata were imputed with medians derived from the training

split, and values were transformed into Z scores.

Modeling

To address the primary objective of detecting signals of translation, we trained

a series of models to predict a binary outcome of inclusion in a patent versus

none and, separately, a binary outcome of inclusion in a guideline or policy

document versus none. This was motivated by two considerations: first, that

each outcome was an independent measure of translation rewarding predom-

inantly fundamental, basic science or applied, clinical (and meta-analytical)

science in patent and guideline or policy classes, respectively, and second,

that patent inclusions were around 50 times more prevalent than guideline

or policy inclusions and might unfairly dwarf the predictive signal of the

latter class.

We first modeled a single variable—paper citations per year—using logistic

regression to provide a baseline prediction reflecting current citations-based

practice (Citations-LogisticRegression). The hyperparameters of this model

were optimized using a parallelized, cross-validated grid search. Logistic

regression was selected for its simplicity over hyperparameter-optimized
apers Patent inclusions Total papers

4,489 783

17,042 4,413

2,557 811

2,016 662

4,733 1,583

29,729 10,910

24,105 10,513

6,862 3,166

1,305 678

1,552 841
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MLPs given statistically equivalent 10-fold cross-validation performance. Sec-

ond, wemodeled themetadata—all features extracted fromMAGpertaining to

the paper and its research environment, excluding title and abstract embed-

dings—using a 6-layer perceptron with categorial variables one-hot encoded

(Metadata-MLP). Third, motivated by the tiled structure of the numerical ab-

stract and title representations, we trained a 1-dimensional CNN for classifica-

tion, using an initial kernel length and stride of 768 to match the length of each

sentence vector, yielding a compact text representation upstream of the fully

connected layers.

These twomodels were tuned by cross-validationwithin the training set, and

the best models were combined into a final model that took the metadata and

title-abstract embeddings as inputs, as specified in Figure S1 (Full-MLP-CNN).

The differing tensor sizes of metadata and title-abstract embeddings at the

concatenation layer of the final model matched the optimal architectures of

the individual models; the need for higher relative compression of the title/ab-

stract embeddings likely reflects the higher density of information in the

metadata.

Interpretability

Deep neural networks do not explicitly provide quantification of the importance

of individual features to prediction. We therefore trained and grid-search-opti-

mized an AdaBoost model45 onmetadata features (Metadata-AdaBoost), cho-

sen for its explainability balanced with good sensitivity to linear and non-linear

effects, and extracted Gini-importance from the best-performing model on

validation data.

To illuminate the title-abstract embeddings, we trained a fully connected au-

toencoder on the 16,128 BioBERT dimensions of each title and abstract,

deriving a 50-dimensional representation compressed to two dimensions

with t-distributed stochastic neighbor embedding (t-SNE).46 The resulting

plot was colored by the presence or absence of a translation inclusion.

Model evaluation

The predictive performance of all models on the training set was evaluated by

stratified 10-fold cross-validation using AUROC and AP, a measure of the area

under the precision recall curve. The former is a common metric for assessing

predictive performance that balances sensitivity against specificity across a

range of classification thresholds, and the latter is more resistant to imbal-

anced data bias and balances sensitivity against precision, the purity of pre-

dicted positive results. The final, tuned, highest-performing model was tested

on the unseen test data and assessed by AUROC and AP. All AUROCs and

APs were macro averaged.

To assess the performance of the final model on future papers, the same ar-

chitecture was trained from scratch on data from January 1990 to December

2013 and tested on data from January 2014 to December 2017. Papers pub-

lished from January 2018 to March 2019 were not used for testing because of

the short latency of conversion to first patent, policy, or guideline inclusion

(Table S3). We measured the performance in the full set of future papers to

obtain summary metrics, in addition to individually across each of the 4 years,

and within the top 8 fields to investigate the calibration to these groups. Any

papers with multiple field membership were considered in each appropriate

field. To quantify any reliance on time-dependent citation patterns for a given

paper, we assessed the performance of the full model whose training set had

‘‘paper citation count,’’ ‘‘paper rank,’’ and ‘‘paper mentions count’’ variables

removed; similarly, to quantify any reliance on features denoting merit extrinsic

to the paper, author-, institution-, journal-, and field-level ranks and counts

were removed.

As further validation, an external, publicly available dataset containing the

publication output of Nobel Prize laureates in physiology or medicine47 was

downloaded, matched to MAG, and processed identically to the test data.

All papers from 1990 to 2019 published up to and including each prize-winning

paper were tested on Citations-MLP, Metadata-MLP, and Full-MLP-CNN pat-

ent inclusion models retrained on the entire corpus with the tested papers

removed. The AUROCs and numbers assigned to positive and negative labels

were recorded. Nobel prizes were counted from 1991–2019 to allow analysis

of at least 1 year of papers preceding the first award.

Descriptive analysis

As a secondary objective, we sought to understand the correspondence of

patent and guideline or policy citations to the far more widely measured and

acknowledged paper citations as well as to understand the community struc-
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ture of patent included versus non-included groups and guideline or policy

included versus not included groups.

Toward the former aim, we plotted paper citations against translation inclu-

sions and examined their correlation by fitting a linear regression model with

1,0003 bootstrapped confidence intervals. We ranked journals by paper cita-

tion counts normalized by the journal’s total paper count within our dataset,

filtered as described for medical papers from 1990–2019 with at least one cita-

tion. This roughly corresponds to a canonical ‘‘impact factor,’’ although the in-

terval is widened from yearly to three decades. We repeated this for a journal’s

patent inclusions count and guideline or policy inclusion count. Journals

analyzed in this manner were filtered to include only those with 500 or more to-

tal papers in the dataset.

Toward the latter aim, we fit Bayesian weighted, non-parametric, nested

stochastic block models29 on all papers with patent inclusions and all papers

without them and then again on all papers with guideline or policy inclusions

and all papers without them, degree corrected and weighted exponentially

by the absolute value of the pairwise correlations of features extracted from

MAG (excluding titles and abstracts). Stochastic block models are generative

random graph models that display community structures, subsets of nodes

connected by larger edge densities than those outside of the subset. The

models were strengthened by sampling from the posterior distribution and

equilibrated with Markov chain Monte Carlo over 100,000 iterations to ensure

convergence. Scalable force-directed placement48 was used for visualization

of the combined feature graph, with node size proportional to eigencentrality

and edge weight and color proportional to the absolute value of the correlation

coefficient between two features.

Analytic environment

All analyses were written in Python 3.5. Preprocessing was performed using

Pandas,49 NumPy,50 and Scikit-Learn51 and visualization using Matplotlib,52

Seaborn,53 and Graph-tool.54 Neural networks were built in Keras55 with Ten-

sorflow backend and PyTorch;56 othermodels were built in Scikit-Learn. t-SNE

was performed using Multicore-TSNE,57 and BioBERT models were down-

loaded and implemented locally. The hardware specification used was as fol-

lows: 96 gigabyte random access memory, Intel Xeon(R) central processing

unit E5-2620 v.4 at 2.10 GHz 3 32 processor, and GeForce GTX 1080/PCIe/

SSE2 graphics.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100483.
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