47 research outputs found

    Stage, grade and morphology of tumours of the colon and rectum recorded in the Oxford Cancer Registry, 1995–2003

    Get PDF
    Data on stage, grade and morphology of 12 761 colorectal cancers registered between 1995 and 2003 by Oxford Cancer Registry are reviewed. Dukes stage is recorded for 81% of colon cancers and for 69% of rectal cancers. Incomplete registry data and changing recording practices may affect future evaluation of bowel cancer screening

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Flow establishment over rearward-facing steps in high enthalpy flows

    No full text
    Establishment of steady flows in areas of separation is of critical importance when experimentally studying hypersonic flows. The University of Queensland has two large scale expansion tube test facilities (X2, X3) capable of generating flow speeds up to 15 km/s. In this paper flow establishment in X2 is examined for a flat plate and a rearward-facing step model and the results compared to those for existing flow establishment theories. It is found that separated flows can be successfully established in an expansion tube, with the results agreeing well with empirical relationships

    Heat transfer and flow behind a step in high enthalpy superorbital flow

    No full text
    Heat transfer levels have been investigated behind a rearward-facing step in a superorbital expansion tube. The heat transfer was measured along a flat plate and behind 2 and 3mm steps with the same length to step height ratio. Results were obtained with air as the test gas at speeds of 6.76kms(-1) and 9-60kms(-1) corresponding to stagnation enthalpies of 26MJ/kg and 48MJ/kg respectively. A laminar boundary layer was established on the flat plate and measured heat transfer levels were consistent with classical empirical correlations. In the case of flow behind a step, the measurements showed a gradual rise in heat transfer from the rear of the step to a plateau several step heights downstream for both flow conditions. Reattachment distance was estimated to be approximately 1.6 step heights downstream of the 2mm step at the low enthalpy condition through the use of flow visualisation

    Paleotectonics of a complex Miocene half graben formed above a detachment fault: The Diligencia basin, Orocopia Mountains, Southern California

    No full text
    The Diligencia basin in the Orocopia Mountains of southeastern California has been one of the primary areas used to test the hypothesis of more than 300 km of dextral slip along the combined San Andreas/San Gabriel fault system. The Orocopia Mountains have also been the focus of research on deposition, deformation, metamorphism, uplift and exposure of the Orocopia Schist, which resulted from fl at-slab subduction during the latest Cretaceous/Paleogene Laramide orogeny. The uppermost Oligocene/Lower Miocene Diligencia Formation consists of more than 1500 m of nonmarine strata, including basalt fl ows and intrusions dated at 24-21 Ma. The base of the Diligencia Formation sits nonconformably on Proterozoic augen gneiss and related units along the southern basin boundary, where low-gradient alluvial fans extended into playa-lacustrine environments to the northeast. The northern basal conglomerate of the Diligencia Formation, which was derived from granitic rocks in the Hayfield Mountains to the north, sits unconformably on the Eocene Maniobra Formation. The northern basal conglomerate is overlain by more than 300 m of mostly red sandstone, conglomerate, mudrock and tuff. The basal conglomerate thins and fines westward; paleocurrent measurements suggest deposition on alluvial fans derived from the northeast, an interpretation consistent with a NW-SE-trending normal fault (present orientation) as the controlling structure of the half graben formed during early Diligencia deposition. This fault is hereby named the Diligencia fault, and is interpreted as a SW-dipping normal fault, antithetic to the Orocopia Mountains detachment and related faults. Deposition of the upper Diligencia Formation was infl uenced by a NE-dipping normal fault, synthetic with, and closer to, the exposed detachment faults. The Diligencia Formation is nonconformable on Mesozoic granitoids in the northwest part of the basin. Palinspastic restoration of the Orocopia Mountain area includes the following phases, each of which corresponds with microplate-capture events along the southern California continental margin: (1) Reversal of 240 km of dextral slip on the San Andreas fault (including the Punchbowl and other fault strands) in order to align the San Francisquito-Fenner-Orocopia Mountains detachment-fault system at 6 Ma. (2) Reversal of N-S shortening and 90° of clockwise rotation of the Diligencia basin and Orocopia Mountains, and 40 km of dextral slip on the San Gabriel fault between 12 and 6 Ma. (3) Reversal of 40° of clockwise rotation of the San Gabriel block (including Soledad basin and Sierra Pelona) and 30 km of dextral slip on the Canton fault between 18 and 12 Ma. These palinspastic restorations result in a coherent set of SW-NE-trending normal faults, basins (including Diligenica basin) and antiformal structures consistent with NW-SE-directed crustal extension from 24 to 18 Ma, likely resulting from the unstable configuration of the Mendocino triple junction. © 2014 Geological Society of America
    corecore