353 research outputs found
Towards co-created food wellbeing: Culinary consumption, braggart word-of-mouth, and the role of participative co-design, service provider support, and C2C interactions
Purpose: This study aims to investigate whether the antecedents of co-creation influence braggart word-of-mouth (WoM) in a participative leisure context, theorising the concept of co-created food well-being and highlighting implications for interactive experience co-design. Design/methodology/approach: A sequential mixed-method approach was used to test a theoretical model; 25 in-depth interviews with cooking class participants were conducted, followed by a post-experience survey (n = 575). Findings: Qualitative results suggest braggart WoM is rooted in active consumer participation in co-designing leisure experiences. The structural model confirms that participation in value co-creating activities (i.e. co-design, customer-to-customer (C2C) interaction), alongside perceived support from service providers, increases consumer perceptions of co-creation and stimulates braggart WoM. Degree of co-creation and support from peers mediate some relationships. Research limitations/implications: Limited by cross-sectional data from one experiential consumption format, the results nevertheless demonstrate the role of active participation in co-design and C2C interactions during value co-creation. This implies that co-created and co-designed leisure experiences can intensify post-consumption behaviours and potentially enhance food well-being. Practical implications: The results highlight that integrating customer participation into service design, while also developing opportunities for peer support on-site, can stimulate braggart WoM. Originality/value: Extends burgeoning literature on co-creation and co-design in leisure services. By encouraging active customer participation while providing support and facilitating C2C interactions, service providers can enhance value co-creation, influencing customer experiences and food well-being. Accordingly, the concept of co-created food well-being is introduced
The catalytic subunit of the system L1 amino acid transporter (S<i>lc7a5</i>) facilitates nutrient signalling in mouse skeletal muscle
The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated heterodimer with the multifunctional protein SLC3A2 (CD98). We generated a floxed Slc7a5 mouse strain which, when crossed with mice expressing Cre driven by a global promoter, produced Slc7a5 heterozygous knockout (Slc7a5+/-) animals with no overt phenotype, although homozygous global knockout of Slc7a5 was embryonically lethal. Muscle-specific (MCK Cre-mediated) Slc7a5 knockout (MS-Slc7a5-KO) mice were used to study the role of intracellular LNAA delivery by the SLC7A5 transporter for mTOR-S6K pathway activation in skeletal muscle. Activation of muscle mTOR-S6K (Thr389 phosphorylation) in vivo by intraperitoneal leucine injection was blunted in homozygous MS-Slc7a5-KO mice relative to wild-type animals. Dietary intake and growth rate were similar for MS-Slc7a5-KO mice and wild-type littermates fed for 10 weeks (to age 120 days) with diets containing 10%, 20% or 30% of protein. In MS-Slc7a5-KO mice, Leu and Ile concentrations in gastrocnemius muscle were reduced by ∼40% as dietary protein content was reduced from 30 to 10%. These changes were associated with >50% decrease in S6K Thr389 phosphorylation in muscles from MS-Slc7a5-KO mice, indicating reduced mTOR-S6K pathway activation, despite no significant differences in lean tissue mass between groups on the same diet. MS-Slc7a5-KO mice on 30% protein diet exhibited mild insulin resistance (e.g. reduced glucose clearance, larger gonadal adipose depots) relative to control animals. Thus, SLC7A5 modulates LNAA-dependent muscle mTOR-S6K signalling in mice, although it appears non-essential (or is sufficiently compensated by e.g. SLC7A8 (LAT2)) for maintenance of normal muscle mass
The Calcitonin and Glucocorticoids Combination: Mechanistic Insights into Their Class-Effect Synergy in Experimental Arthritis
PMCID: PMC3564948This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Activation of AMPA Receptors in the Suprachiasmatic Nucleus Phase-Shifts the Mouse Circadian Clock In Vivo and In Vitro
The glutamatergic neurotransmission in the suprachiasmatic nucleus (SCN) plays a central role in the entrainment of the circadian rhythms to environmental light-dark cycles. Although the glutamatergic effect operating via NMDAR (N-methyl D-aspartate receptor) is well elucidated, much less is known about a role of AMPAR (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor) in circadian entrainment. Here we show that, in the mouse SCN, GluR2 and GluR4 AMPAR subtypes are abundantly expressed in the retinorecipient area. In vivo microinjection of AMPA in the SCN during the early subjective night phase-delays the behavioral rhythm. In the organotypic SCN slice culture, AMPA application induces phase-dependent phase-shifts of core-clock gene transcription rhythms. These data demonstrate that activation of AMPAR is capable of phase-shifting the circadian clock both in vivo and in vitro, and are consistent with the hypothesis that activation of AMPA receptors is a critical step in the transmission of photic information to the SCN
Resolving the Trophic Relations of Cryptic Species: An Example Using Stable Isotope Analysis of Dolphin Teeth
Understanding the foraging ecology and diet of animals can play a crucial role in conservation of a species. This is particularly true where species are cryptic and coexist in environments where observing feeding behaviour directly is difficult. Here we present the first information on the foraging ecology of a recently identified species of dolphin (Southern Australian bottlenose dolphin (SABD)) and comparisons to the common bottlenose dolphin (CBD) in Victoria, Australia, using stable isotope analysis of teeth. Stable isotope signatures differed significantly between SABD and CBD for both δ13C (−14.4‰ vs. −15.5‰ respectively) and δ15N (15.9‰ vs. 15.0‰ respectively), suggesting that the two species forage in different areas and consume different prey. This finding supports genetic and morphological data indicating that SABD are distinct from CBD. In Victoria, the SABD is divided into two distinct populations, one in the large drowned river system of Port Phillip Bay and the other in a series of coastal lakes and lagoons called the Gippsland Lakes. Within the SABD species, population differences were apparent. The Port Phillip Bay population displayed a significantly higher δ15N than the Gippsland Lakes population (17.0‰ vs. 15.5‰), suggesting that the Port Phillip Bay population may feed at a higher trophic level - a result which is supported by analysis of local food chains. Important future work is required to further understand the foraging ecology and diet of this newly described, endemic, and potentially endangered species of dolphin
Infestation of shore crab gills by a free-living mussel species
Parasitic and commensal species can impact the structure and function of ecological communities and are typically highly specialized to overcome host defences. Here, we report multiple instances of a normally free-living species, the blue mussel Mytilus edulis Linnaeus, 1758, inhabiting the branchial chamber of the shore crab Carcinus maenas (Linnaeus, 1758) collected from widely separated geographical locations. A total of 127 C. maenas were examined from four locations in the English Channel, one location in the Irish Sea and two locations at the entrance of the Baltic Sea. The branchial chambers of three crabs (one from the English Channel and two from Gullmar Fjord, Sweden) were infested with mussels resembling the genus Mytilus. Sequencing at the Me15/16 locus on the polyphenolic adhesive protein gene confirmed the identity as M. edulis. Bivalve infestation always occurred in larger red male individuals. Up to 16 mussels, ranging from 2 to 11 mm in shell length, were found in each individual, either wedged between gill lamellae or attached to the branchial chamber inner wall. This is one of the first reports of a bivalve inhabiting crustacean gills and is an intriguing case of a normally free-living prey species infesting its predato
Satellite Telemetry and Long-Range Bat Movements
Background: Understanding the long-distance movement of bats has direct relevance to studies of population dynamics, ecology, disease emergence, and conservation.
Methodology/Principal Findings: We developed and trialed several collar and platform terminal transmitter (PTT) combinations on both free-living and captive fruit bats (Family Pteropodidae: Genus Pteropus). We examined transmitter weight, size, profile and comfort as key determinants of maximized transmitter activity. We then tested the importance of bat-related variables (species size/weight, roosting habitat and behavior) and environmental variables (day-length, rainfall pattern) in determining optimal collar/PTT configuration. We compared battery- and solar-powered PTT performance in various field situations, and found the latter more successful in maintaining voltage on species that roosted higher in the tree canopy, and at lower density, than those that roost more densely and lower in trees. Finally, we trialed transmitter accuracy, and found that actual distance errors and Argos location class error estimates were in broad agreement.
Conclusions/Significance: We conclude that no single collar or transmitter design is optimal for all bat species, and that species size/weight, species ecology and study objectives are key design considerations. Our study provides a strategy for collar and platform choice that will be applicable to a larger number of bat species as transmitter size and weight continue to decrease in the future
Experimental infection in calves with a specific subtype of verocytotoxin-producing Escherichia coli O157:H7 of bovine origin
<p>Abstract</p> <p>Background</p> <p>In Sweden, a particular subtype of verocytotoxin-producing <it>Escherichia coli </it>(VTEC) O157:H7, originally defined as being of phage type 4, and carrying two <it>vtx</it><sub>2 </sub>genes, has been found to cause the majority of reported human infections during the past 15 years, including both sporadic cases and outbreaks. One plausible explanation for this could be that this particular subtype is better adapted to colonise cattle, and thereby may be excreted in greater concentrations and for longer periods than other VTEC O157:H7 subtypes.</p> <p>Methods</p> <p>In an experimental study, 4 calves were inoculated with 10<sup>9 </sup>colony forming units (cfu) of strain CCUG 53931, representative of the subtype VTEC O157:H7 (PT4;<it>vtx</it><sub>2</sub>;<it>vtx</it><sub>2c</sub>). Two un-inoculated calves were co-housed with the inoculated calves. Initially, the VTEC O157:H7 strain had been isolated from a dairy herd with naturally occurring infection and the farm had previously also been linked to human infection with the same strain. Faecal samples were collected over up to a 2-month period and analysed for VTEC O157 by immuno-magnetic separation (IMS), and IMS positive samples were further analysed by direct plating to elucidate the shedding pattern. Samples were also collected from the pharynx.</p> <p>Results</p> <p>All inoculated calves proved culture-positive in faeces within 24 hours after inoculation and the un-inoculated calves similarly on days 1 and 3 post-inoculation. One calf was persistently culture-positive for 43 days; in the remainder, the VTEC O157:H7 count in faeces decreased over the first 2 weeks. All pharyngeal samples were culture-negative for VTEC O157:H7.</p> <p>Conclusion</p> <p>This study contributes with information concerning the dynamics of a specific subtype of VTEC O157:H7 colonisation in dairy calves. This subtype, VTEC O157:H7 (PT4;<it>vtx</it><sub>2;</sub><it>vtx</it><sub>2c</sub>), is frequently isolated from Swedish cattle and has also been found to cause the majority of reported human infections in Sweden during the past 15 years. In most calves, inoculated with a representative strain of this specific subtype, the numbers of shed bacteria declined over the first two weeks. One calf could possibly be classified as a high-shedder, excreting high levels of the bacterium for a prolonged period.</p
- …