406 research outputs found

    Stealth Supersymmetry

    Full text link
    We present a broad class of supersymmetric models that preserve R-parity but lack missing energy signatures. These models have new light particles with weak-scale supersymmetric masses that feel SUSY breaking only through couplings to the MSSM. This small SUSY breaking leads to nearly degenerate fermion/boson pairs, with small mass splittings and hence small phase space for decays carrying away invisible energy. The simplest scenario has low-scale SUSY breaking, with missing energy only from soft gravitinos. This scenario is natural, lacks artificial tunings to produce a squeezed spectrum, and is consistent with gauge coupling unification. The resulting collider signals will be jet-rich events containing false resonances that could resemble signatures of R-parity violation. We discuss several concrete examples of the general idea, and emphasize gamma + jet + jet resonances, displaced vertices, and very large numbers of b-jets as three possible discovery modes.Comment: 12 pages, 4 figure

    Mining a Sea of Data: Deducing the Environmental Controls of Ocean Chlorophyll

    Get PDF
    Chlorophyll biomass in the surface ocean is regulated by a complex interaction of physiological, oceanographic, and ecological factors and in turn regulates the rates of primary production and export of organic carbon to the deep ocean. Mechanistic models of phytoplankton responses to climate change require the parameterization of many processes of which we have limited knowledge. We develop a statistical approach to estimate the response of remote-sensed ocean chlorophyll to a variety of physical and chemical variables. Irradiance over the mixed layer depth, surface nitrate, sea-surface temperature, and latitude and longitude together can predict 83% of the variation in log chlorophyll in the North Atlantic. Light and nitrate regulate biomass through an empirically determined minimum function explaining nearly 50% of the variation in log chlorophyll by themselves and confirming that either light or macronutrients are often limiting and that much of the variation in chlorophyll concentration is determined by bottom-up mechanisms. Assuming the dynamics of the future ocean are governed by the same processes at work today, we should be able to apply these response functions to future climate change scenarios, with changes in temperature, nutrient distributions, irradiance, and ocean physics

    Changes in microphytobenthos fluorescence over a tidal cycle: implications for sampling designs

    Get PDF
    Intertidal microphytobenthos (MPB) are important primary producers and provide food for herbivores in soft sediments and on rocky shores. Methods of measuring MPB biomass that do not depend on the time of collection relative to the time of day or tidal conditions are important in any studies that need to compare temporal or spatial variation, effects of abiotic factors or activity of grazers. Pulse amplitude modulated (PAM) fluorometry is often used to estimate biomass of MPB because it is a rapid, non-destructive method, but it is not known how measures of fluorescence are altered by changing conditions during a period of low tide. We investigated this experimentally using in situ changes in minimal fluorescence (F) on a rocky shore and on an estuarine mudflat around Sydney (Australia), during low tides. On rocky shores, the time when samples are taken during low tide had little direct influence on measures of fluorescence as long as the substratum is dry. Wetness from wave-splash, seepage from rock pools, run-off, rainfall, etc., had large consequences for any comparisons. On soft sediments, fluorescence was decreased if the sediment dried out, as happens during low-spring tides on particularly hot and dry days. Surface water affected the response of PAM and therefore measurements used to estimate MPB, emphasising the need for care to ensure that representative sampling is done during low tide

    Anomalous Couplings in Double Higgs Production

    Full text link
    The process of gluon-initiated double Higgs production is sensitive to non-linear interactions of the Higgs boson. In the context of the Standard Model, studies of this process focused on the extraction of the Higgs trilinear coupling. In a general parametrization of New Physics effects, however, an even more interesting interaction that can be tested through this channel is the (ttbar hh) coupling. This interaction vanishes in the Standard Model and is a genuine signature of theories in which the Higgs boson emerges from a strongly-interacting sector. In this paper we perform a model-independent estimate of the LHC potential to detect anomalous Higgs couplings in gluon-fusion double Higgs production. We find that while the sensitivity to the trilinear is poor, the perspectives of measuring the new (ttbar hh) coupling are rather promising.Comment: 22 pages, 9 figures. v2: plots of Figs.8 and 9 redone to include experimental uncertainty on the Higgs couplings, references adde

    Doubling of marine dinitrogen-fixation rates based on direct measurements

    Get PDF
    Biological dinitrogen fixation provides the largest input of nitrogen to the oceans, therefore exerting important control on the ocean’s nitrogen inventory and primary productivity. Nitrogen-isotope data fromocean sediments suggest that the marine-nitrogen inventory has been balanced for the past 3,000 years (ref. 4). Producing a balanced marine-nitrogenbudget based on direct measurements has proved difficult, however, with nitrogen loss exceeding the gain from dinitrogen fixation by approximately 200 TgNyr-1 (refs 5, 6). Here we present data from the Atlantic Ocean and show that the most widely used method of measuring oceanic N2-fixation rates underestimates the contribution of N2-fixing microorganisms (diazotrophs) relative to a newly developed method. Using molecular techniques to quantify the abundance of specific clades of diazotrophs in parallel with rates of 15N2 incorporation into particulate organic matter, we suggest that the difference between N2-fixation rates measured with the established method and those measured with the new method8 can be related to the composition of the diazotrophic community. Our data show that in areas dominated by Trichodesmium, the established method underestimatesN2-fixation rates by an averageof 62%. We also find that the newly developed method yields N2-fixation rates more than six times higher than those from the established method when unicellular, symbiotic cyanobacteria and c-proteobacteria dominate the diazotrophic community. On the basis of average areal rates measured over the Atlantic Ocean, we calculated basin-wide N2-fixation rates of 14+/-1TgNyr-1 and 24+/-1TgNyr-1 for the established and new methods, respectively. If our findings can be extrapolated to other ocean basins, this suggests that the global marine N2-fixation rate derived from direct measurements may increase from 103+/-8TgNyr-1 to 177+/-8TgNyr-1, and that the contribution of N2 fixers other than Trichodesmium is much more significant than was previously thought

    Low-Energy Probes of a Warped Extra Dimension

    Full text link
    We investigate a natural realization of a light Abelian hidden sector in an extended Randall-Sundrum (RS) model. In addition to the usual RS bulk we consider a second warped space containing a bulk U(1)_x gauge theory with a characteristic IR scale of order a GeV. This Abelian hidden sector can couple to the standard model via gauge kinetic mixing on a common UV brane. We show that if such a coupling induces significant mixing between the lightest U(1)_x gauge mode and the standard model photon and Z, it can also induce significant mixing with the heavier U(1)_x Kaluza-Klein (KK) modes. As a result it might be possible to probe several KK modes in upcoming fixed-target experiments and meson factories, thereby offering a new way to investigate the structure of an extra spacetime dimension.Comment: 26 pages, 1 figure, added references, corrected minor typos, same as journal versio

    LHC Signatures of a Minimal Supersymmetric Hidden Valley

    Full text link
    We investigate the LHC signals of a minimal supersymmetric hidden valley. Our theory consists of the supersymmetric Standard Model along with a light hidden U(1)_x gauge multiplet and a pair of hidden chiral superfields that spontaneously break the new Abelian gauge symmetry near a GeV. The visible and hidden sectors interact exclusively through supersymmetric gauge kinetic mixing. We perform a thorough examination of the hidden decay cascades initiated by the lightest Standard Model superpartner and we study the range of LHC signals they can produce. In particular, we find parameter regions that give rise to missing energy, single and multiple lepton jets, and displaced vertices. Given the simplicity of the underlying theory and the broad range of collider signals it can produce, we propose that this model is a useful benchmark for LHC studies of (supersymmetric) hidden valleys.Comment: 45 pages, 15 figures; typos corrected but conclusions unchange

    A global perspective on marine photosynthetic picoeukaryote community structure

    Get PDF
    A central goal in ecology is to understand the factors affecting the temporal dynamics and spatial distribution of microorganisms and the underlying processes causing differences in community structure and composition. However, little is known in this respect for photosynthetic picoeukaryotes (PPEs), algae that are now recognised as major players in marine CO2 fixation. Here, we analysed dot blot hybridisation and cloning–sequencing data, using the plastid-encoded 16S rRNA gene, from seven research cruises that encompassed all four ocean biomes. We provide insights into global abundance, α- and β-diversity distribution and the environmental factors shaping PPE community structure and composition. At the class level, the most commonly encountered PPEs were Prymnesiophyceae and Chrysophyceae. These taxa displayed complementary distribution patterns, with peak abundances of Prymnesiophyceae and Chrysophyceae in waters of high (25:1) or low (12:1) nitrogen:phosphorus (N:P) ratio, respectively. Significant differences in phylogenetic composition of PPEs were demonstrated for higher taxonomic levels between ocean basins, using Unifrac analyses of clone library sequence data. Differences in composition were generally greater between basins (interbasins) than within a basin (intrabasin). These differences were primarily linked to taxonomic variation in the composition of Prymnesiophyceae and Prasinophyceae whereas Chrysophyceae were phylogenetically similar in all libraries. These data provide better knowledge of PPE community structure across the world ocean and are crucial in assessing their evolution and contribution to CO2 fixation, especially in the context of global climate change

    Comparison of techniques used to count single-celled viable phytoplankton

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Applied Phycology 24 (2012): 751-758, doi:10.1007/s10811-011-9694-z.Four methods commonly used to count phytoplankton were evaluated based upon the precision of concentration estimates: Sedgewick Rafter and membrane filter direct counts, flow cytometry, and flow-based imaging cytometry (FlowCAM). Counting methods were all able to estimate the cell concentrations, categorize cells into size classes, and determine cell viability using fluorescent probes. These criteria are essential to determine whether discharged ballast water complies with international standards that limit the concentration of viable planktonic organisms based on size class. Samples containing unknown concentrations of live and UV-inactivated phytoflagellates (Tetraselmis impellucida) were formulated to have low concentrations (<100 ml-1) of viable phytoplankton. All count methods used chlorophyll a fluorescence to detect cells and SYTOX fluorescence to detect non-viable cells. With the exception of one sample, the methods generated live and non-viable cell counts that were significantly different from each other, although estimates were generally within 100% of the ensemble mean of all subsamples from all methods. Overall, percent coefficient of variation (CV) among sample replicates was lowest in membrane filtration sample replicates, and CVs for all four counting methods were usually lower than 30% (although instances of ~60% were observed). Since all four methods were generally appropriate for monitoring discharged ballast water, ancillary considerations (e.g., ease of analysis, sample processing rate, sample size, etc.) become critical factors for choosing the optimal phytoplankton counting method.This study was supported by the U.S. Coast Guard Research and Development Center under contract HSCG32-07- X-R00018. Partial research support to DMA and DMK was provided through NSF International Contract 03/06/394, and Environmental Protection Agency Grant RD-83382801-0

    The significance of nitrogen cost minimization in proteomes of marine microorganisms

    Get PDF
    Marine microorganisms thrive under low levels of nitrogen (N). N cost minimization is a major selective pressure imprinted on open-ocean microorganism genomes. Here we show that amino-acid sequences from the open ocean are reduced in N, but increased in average mass compared with coastal-ocean microorganisms. Nutrient limitation exerts significant pressure on organisms supporting the trade-off between N cost minimization and increased average mass of amino acids that is a function of increased A+T codon usage. N cost minimization, especially of highly expressed proteins, reduces the total cellular N budget by 2.7–10% this minimization in combination with reduction in genome size and cell size is an evolutionary adaptation to nutrient limitation. The biogeochemical and evolutionary precedent for these findings suggests that N limitation is a stronger selective force in the ocean than biosynthetic costs and is an important evolutionary strategy in resource-limited ecosystems
    • …
    corecore