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ABSTRACT 

Four methods commonly used to count phytoplankton were evaluated based upon the precision of concentration 6 

estimates: Sedgewick Rafter and membrane filter direct counts, flow cytometry, and flow-based imaging cytometry 7 

(FlowCAM).  Counting methods were all able to estimate the cell concentrations, categorize cells into size classes, 8 

and determine cell viability using fluorescent probes.  These criteria are essential to determine whether discharged 9 

ballast water complies with international standards that limit the concentration of viable planktonic organisms based 10 

on size class.  Samples containing unknown concentrations of live and UV-inactivated phytoflagellates (Tetraselmis 11 

impellucida) were formulated to have low concentrations (<100 ml-1) of viable phytoplankton.  All count methods 12 

used chlorophyll a fluorescence to detect cells and SYTOX fluorescence to detect non-viable cells.  With the 13 

exception of one sample, the methods generated live and non-viable cell counts that were significantly different 14 

from each other, although estimates were generally within 100% of the ensemble mean of all subsamples from all 15 

methods.  Overall, percent coefficient of variation (CV) among sample replicates was lowest in membrane filtration 16 

sample replicates, and CVs for all four counting methods were usually lower than 30% (although instances of ~60% 17 

were observed).  Since all four methods were generally appropriate for monitoring discharged ballast water, 18 

ancillary considerations (e.g., ease of analysis, sample processing rate, sample size, etc.) become critical factors for 19 

choosing the optimal phytoplankton counting method.   20 

                                                             
1 Naval Research Laboratory; Washington, DC 
2 Science Applications International Corporation, Naval Research Laboratory; Key West, FL  
3 Naval Research Laboratory; Key West, Florida 
4 Battenkill Technologies; Manchester Center, VT 
5 Woods Hole Oceanographic Institution, Woods Hole, MA 02543 
6 Moss Landing Marine Laboratory, Moss Landing, CA 
7 United States Coast Guard; New London, CT 
* Corresponding author; email: lisa.drake@nrl.navy.mil; ph: 305.293.4215; fax: 305.293.4213 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Woods Hole Open Access Server

https://core.ac.uk/display/9340572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lisa.drake@nrl.navy.mil


    

 

 2 of 13 

INTRODUCTION 

Photosynthetic plankton, or phytoplankton, are the foundation of the oceanic food web and are responsible 21 

for approximately 50% of the global carbon fixation (Falkowski and Wilson 1992).  Consequently, determining the 22 

abundance, growth, and productivity of phytoplankton is crucial to understanding major oceanic biogeochemical 23 

cycles and trophic pathways (Falkowski et al. 1998).  Phytoplankton concentrations are frequently inferred from 24 

bulk measurements, such as ocean surface color (Boyce et al. 2010), fluorescence (Welschmeyer 1994), or total 25 

chlorophyll concentrations (e.g., Bidigare et al. 1986).  These methods provide an overall assessment of the total 26 

phytoplankton community, which includes various taxonomic groups (such as diatoms, dinoflagellates, 27 

cyanobacteria) and ranges in size from picoplankton to macroalgae.  Bulk measurements, however, do not address 28 

some critical characteristics of the phytoplankton community, such as cell concentration, taxonomic composition, or 29 

physiological status. While methods exist to characterize the community based upon photopigments (e.g., Mackey et 30 

al. 1996), numerical counts of composite phytoplankton cannot be determined from bulk measurements.  Relative 31 

concentrations of chlorophyll a vary between algal taxa and can change in response to different environmental 32 

conditions (Cloern et al. 1995; de Jonge and Colijn 1994).  In algal monocultures, the ratio of chlorophyll a to cell 33 

concentration changes with cell physiology and growth phase (Wirtz and Pahlow 2010).  Therefore, bulk 34 

measurements based upon chlorophyll a may be a poor proximal measurement of phytoplankton concentrations.  35 

Instead, single cell counting methods, such as microscopy and flow cytometry, are required to precisely estimate 36 

concentrations of phytoplankton (Lessard and Swift 1986; Veldhuis and Kraay 2000). 37 

 Microscopy has been used to examine chemically preserved samples collected on membrane filters 38 

(Fahnenstiel et al. 1995) or settled in counting chambers (Willén 1976).  Flow cytometry is well suited to detect 39 

phytoplankton based on their natural chlorophyll fluorescence and was critical in the discovery of the superabundant 40 

picoplankter Prochlorococcus and in advancing our understanding of the importance of picophytoplankton in 41 

oceanic primary production (Chisholm et al. 1988).  Instruments combining the imaging capability of microscopy 42 

and the flow-through particle analysis of flow cytometry have also been used to count phytoplankton.  Examples 43 

include the FlowCAM® (Fluid Imaging Technologies, Brunswick, ME; Buskey and Hyatt 2006; See et al. 2005) 44 

and the Flow Cytobot (BD, Franklin Lakes, NJ; Sosik et al. 2003; Olson and Sosik 2007).  The novel imaging 45 

cytometers have the shortest record of usage for counting phytoplankton, therefore, assessing the precision and 46 
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accuracy of these devices (relative to more established techniques) is valuable to set the optimal operating criteria 47 

and detection limits.   48 

In January 2008, a workshop was organized to evaluate four methods for enumerating viable 49 

phytoplankton: flow cytometry, an enhanced flow-through system with imaging capacity (FlowCAM®), direct 50 

counts of samples collected on membrane filters, and direct counts using a Sedgewick Rafter counting chamber.  All 51 

techniques used fluorescent stains to differentiate between live and dead cells.  Counting methods were tested with 52 

several ratios and densities of live and dead Tetraselmis impellucida, a small phytoflagellate.  In the techniques 53 

evaluated in this workshop, cell size was determined either from captured images, size references in the microscope 54 

field, or light scattering signal for flow cytometry.  Comparisons were conducted under ideal conditions with no 55 

debris or particulate matter and with a single target species. 56 

This work was conducted to guide the development of standard methods for counting planktonic organisms 57 

≥10 µm and < 50 µm in minimum dimension in studies of ballast water treatment.  This size class is specified by the 58 

International Maritime Organization (IMO) in the 2004 convention for managing ships’ ballast water and sediments 59 

that aims to reduce the spread of aquatic nuisance species via ballast water discharge.  Standards set in the IMO 60 

convention state that there should be less than 10 viable organisms ≥10 µm and < 50 µm in minimum dimension per 61 

ml of water (IMO 2004).  The proposed U.S. Phase I discharge standard is identical for this size class (Federal 62 

Register 2009).  Notably, it does not include all phytoplankton (because some phytoplankters are > 50 µm or < 10 63 

µm in minimum dimension), nor is this size class exclusively composed of phytoplankton.  Nevertheless, 64 

phytoplankton are a dominant component of this size class in most aquatic systems, and, therefore, we evaluated the 65 

four counting methods on their ability to detect and categorize phytoplankton based upon cell size and viability. The 66 

IMO G8 guidelines define “viable organisms” as “organisms and any life stages thereof that are living” (2005); for 67 

the purposes of this paper, organisms will be classified as either ‘live’ or ‘dead’.  Here we describe the precision of 68 

the counting techniques and weigh the advantages and disadvantages of each for counting phytoplankton with 69 

respect to ballast water issues.  70 

 

METHODS 

Sample preparation  
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To reduce the number of variables and provide a clear comparison between counting techniques, 71 

concentrated monocultures of Tetraselmis impellucida. (strain PLY 429), an autotrophic flagellate, were shipped 72 

from Reed Mariculture (Campbell, CA), which also provided an estimate of the cell density before packaging. The 73 

mean cell width was approximately 10 µm. In addition to live cells, batches of T. impellucida were killed by 74 

exposing them to UV light (a 122 cm, 30 Watt Ultra Violet Germicidal Lamp) for 30 minutes.  The efficacy of this 75 

UV treatment was verified by comparing concentrations of live and dead cells in treated and untreated samples 76 

(described below).  Samples 1- 6 were prepared by mixing live stock cultures with UV treated cultures at varying 77 

ratios and diluting with room temperature artificial seawater (Instant Ocean®; Aquarium Systems, Inc., Mentor, 78 

OH) for a total volume of 10 L, which was aliquoted to participants for analysis.  The actual concentration of the 79 

cultures could not be measured using any of the methods in the workshop without creating bias for that method, so 80 

the densities of cells in the samples were estimated using the concentrations provided by the manufacturer. Fresh 81 

sample concentrations with varying ratios of live and dead Tetraselmis were prepared over the course of six days for 82 

analysis during the workshop and analyzed within 5 hours. Four methods of analysis were performed: flow 83 

cytometry, direct counts on membrane filters, FlowCAM®, and direct optical counts in a Sedgewick Rafter counting 84 

chamber.    85 

 

Flow cytometry  

Subsamples were analyzed using a Becton-Dickinson FACSort flow cytometer operated with CellQuest 86 

Acquisition Software and CYTOWIN 4.31 analysis software. Using a flow rate of 60 µl min-1, each run took 87 

approximately 15 minutes to analyze 0.9 ml. Subsamples were incubated with the mortal stain SYTOX Green (0.5 88 

µM, 15 min, Invitrogen, Life Technologies), which is cell impermeable and can only enter cells that have a 89 

compromised membrane.  When SYTOX Green binds to DNA, it has an excitation maximum of 504 nm and an 90 

emission maximum of 523 nm.  Cells were classified as live or dead based on their red chlorophyll fluorescence 91 

without green DNA fluorescence or red chlorophyll fluorescence with green nuclear fluorescence, respectively. 92 

Forward and side light scatter measurements were also used to help assess the target cell populations.  93 

 

Direct counts on membrane filters  
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Subsamples (5 ml) were incubated at room temperature in the dark for 45 min after the addition of either 94 

the “dead” vital stain, SYTOX Green (0.5 µM) or CellTracker™ Green CMFDA (5 µM, Invitrogen, Life 95 

Technologies), an enzymatically activated “live” vital fluorescent stain.  These subsamples were then preserved with 96 

formalin (5% v/v) for 1 min to terminate the live cell enzymatic reaction with CMFDA, and then rinsed (3x with 97 

filtered seawater, 3 ml each) and filtered onto 5-µm pore size, 25-mm diameter Whatman Cyclopore™ 98 

polycarbonate membrane filters and mounted on glass microscope slides with 25 µl glycerin to deter 99 

photobleaching.  Slides were enumerated at 200x magnification using a Lietz Diaplan microscope equipped with a 100 

100-watt high-pressure mercury lamp and a blue light excitation filter set (480/40; 505; 510LP).  For low density 101 

samples, the entire filter was examined and counted, and for high-density samples, transects of the filter were 102 

analyzed until 400 cells were tallied (Andersen and Throndsen 2003).  Both living and dead cells had bright red 103 

chlorophyll fluorescence that significantly aided in the identification of the T. impellucida cells.  Live cells were 104 

classified based on green fluorescence within the cytoplasm resulting from the CMFDA labeling, while dead 105 

STYOX-stained cells had a distinct green fluorescent nucleus.  106 

 

FlowCAM® 

  The FlowCAM® is a flow-through imaging cytometer (Fluid Imaging Technology, Yarmouth, ME).  Algal 107 

subsamples were stained with SYTOX Green (0.9 µM, 10 min) before being analyzed with the FlowCAM®, and a 108 

stained blank (artificial seawater only) was used to calibrate the background fluorescence of SYTOX Green.  109 

Subsamples (1 ml) were analyzed at a flow rate of 77 µl min-1. An image of the triggered particle was automatically 110 

taken when detected, and chlorophyll fluorescence, SYTOX Green fluorescence, and forward scatter intensities 111 

were recorded.  Images and measurements were then analyzed using VisualSpreadsheet software (Fluid Imaging) to 112 

identify particles with only chlorophyll fluorescence (live cells) and particles with chlorophyll and SYTOX 113 

fluorescence (dead cells).  Cells that had no fluorescence of either spectrum were classified as ‘unknown’ and 114 

included in the total cell counts. 115 

 

Sedgewick-Rafter Counting Chamber 

Tetraselmis cells were immobilized by adding two drops of acetic acid (Heinz vinegar) to 10 ml aliquots of 116 

the sample. Subsamples (1 ml) of the immobilized stock culture were stained with SYTOX Green (0.9 µM), 117 
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incubated for 10 min in the dark, and transferred to a Sedgewick Rafter chamber etched with a 20 row x 50 column 118 

grid. Chambers were examined with a Nikon E600 compound microscope with a blue excitation filter cube (470/40; 119 

500; 515LP) at 100-200x magnification. For each subsample, ten rows were randomly selected and counted for a 120 

final analysis volume of 500 µl.  First, the total number of cells in a row was counted under brightfield illumination, 121 

and then, the row was examined again under epifluorescence to identify the dead cells stained with SYTOX Green. 122 

Live cells were calculated as the difference between total and dead cell counts.  123 

 

Efficacy of UV treatment 

Aliquots of Tetraselmis cells were inactivated with UV light before addition to samples.  Twenty ml of 124 

concentrated Tetraselmis culture (~105 cells ml-1) were added to 10 cm diameter, 1.5 cm deep plastic Petri dishes.  125 

Open dishes were placed approximately 13 cm below a UV germicidal lamp and incubated for 30 minutes.  Control 126 

samples were incubated in the same room outside of the safety cabinet and away from the UV light.  Cultures were 127 

kept at ambient conditions for 1 hour after the treatment to ensure damaged cells had time to die, at which point 128 

CMFDA and fluorescein diacetate (FDA), another green, fluorescent “live” vital stain, were added to a subsample of 129 

the cultures (5.0 and 2.5 µM, final concentrations, respectively).  Stained samples were incubated for 10 min in the 130 

dark and counted on Sedgewick Rafter counting chambers within 30 minutes of the start of the incubation.  Total 131 

cells were first counted under brightfield illumination; live cells were visualized and counted using epifluorecence 132 

illumination.  Dead cells were calculated as the difference between total and live cells.  133 

 

Statistical Analysis 

Live and total cell densities for each sample were first tested for homogeneity of variances with the 134 

Levene’s test (SPSS 13.0; Chicago, IL). If variances were statistically equal at the p ≤ 0.05 confidence level, the 135 

means were compared with ANOVA, and pair-wise comparisons were made with Tukey’s HSD post-hoc test.  If 136 

variances were unequal, the means were compared with Welch’s ANOVA, which assumes unequal variance, and 137 

pair-wise comparisons were made with the Games-Howell post-hoc test. In addition, the coefficient of variation 138 

(CV) was measured for the sample replicates of each method.  139 

 

RESULTS AND DISCUSSION 
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 The goal of this study was to assess four different techniques used to determine phytoplankton 140 

concentrations and viability.  The techniques were chosen based upon several criteria.  First, the techniques should 141 

be able to count the number of individual cells in a suspension.  Second, the techniques should be able to measure 142 

the dimensions of the organisms.  Cells measurement data were not collected when the techniques were used in the 143 

study presented here; however, determining if cells are within a specific size class may be critical for certain studies, 144 

such as evaluating the efficacy of treatment for ballast tank discharge water.  Finally, the methods must be capable 145 

of distinguishing between live and dead phytoplankton, and techniques must allow for rapid processing to ensure 146 

that live cells do not die before they are analyzed.  The reader is directed to another comparative study of 147 

phytoplankton counting methods by Karlson et al (2010).  A number of different methods were compared for total 148 

cell counts, but no studies were made on cell viability.   149 

 Because the actual stock culture concentration was unknown, an ‘ensemble’ mean was calculated by 150 

averaging the concentrations measured by each method. If one of the methods (e.g. Sedgewick Rafter counting 151 

chambers) had been used to determine the initial concentration and percent viability of Tetraselmis in culture, then it 152 

is possible that the comparisons of the methods would have been biased to the method chosen to initially measure 153 

culture concentrations. Although Sedgewick Rafter chambers are known to be very accurate with high densities of 154 

cells, the samples used in this study had low organism densities to simulate treated ballast water.  The disadvantage 155 

of using an ensemble mean is its sensitivity to extreme measurements.  Also, this approach implies that the true 156 

concentrations fall within the range of concentrations measured by the different techniques.  Nevertheless, the 157 

difference in measured cell concentrations among methods was never more than a factor of two, though they were 158 

significantly different from each other.  Total cell concentrations in the test samples were <1000 ml-1 and typically 159 

less than 100 ml-1, falling within the range of phytoplankton concentrations observed in some near-shore 160 

environments (Olson and Sosik 2007) but well below concentrations observed during bloom conditions where 161 

phytoplankton density can approach 106 cells ml-1 (e.g., Buskey et al. 2001).  162 

Methods used to detect phytoplankton in treated ballast water discharge must be able to detect live 163 

phytoplankton amid high concentrations of dead cells.  In this study, UV light was used to kill cultured cells.  In a 164 

subset of trials designed to validate our method of killing cells, live Tetraselmis in a positive control culture 165 

comprised approximately 88 ± 12 % of the total cell count whereas live Tetraselmis accounted for only 0.3 ± 0.3% 166 

of the total cell count in UV-treated samples.  Therefore, UV treatment was sufficient to kill > 99% of the cells and 167 
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significantly reduced the concentrations of live cells relative to control treatments (ANOVA, p < 0.05; data not 168 

shown).  Viability in these trials was tested with the “live” vital stains CMFDA and FDA, which react with cytosolic 169 

enzymes. Therefore, the UV treatment either deactivated the enzymes involved in transforming the fluorochromes or 170 

prevented intracellular accumulation of the stains within cells. 171 

A general approach for classifying live and dead cells was to count total phytoplankton (using chlorophyll 172 

a fluorescence to identify cells) and dead phytoplankton (using SYTOX fluorescence); live cell concentrations were 173 

the difference between total and dead counts.  SYTOX has previously been used to label phytoplankton with 174 

compromised cell membranes (Brussaard et al. 2001), but has been found to underestimate the relative portion of 175 

dead cells in certain cases (e.g., when cells have damaged DNA; Lebaron et al. 1998).  An alternative to counting 176 

dead cells is to use “live” vital stains (e.g. CMFDA and FDA) to directly count living cells.  Only one method in this 177 

study used a live vital stain. 178 

With the exception of Sample 4, the concentrations of live cells measured by each method were 179 

significantly different within each sample (ANOVA, p ≤ 0.05; Figure 1).  The concentrations of total cells measured 180 

by each method were also significantly different except for Sample 1 (p = 0.06).  The FlowCAM® method 181 

generated cells classified as “unknown” (i.e., cells which had neither chlorophyll fluorescence nor SYTOX Green 182 

fluorescence), and these objects were included in the total cell counts.  The percentage of indistinguishable cells 183 

varied for each sample; in Sample 1, the indistinguishable cell concentration was 26 cells ml-1, or approximately 184 

53% of the total count.  However, in samples 4, 5, and 6, indistinguishable cells represented less than 10% of the 185 

total cell concentration.  186 

Samples contained a range of total cell concentrations (24 to 880 cells ml-1) and percentages of living cells 187 

(12 – 63%). There was no significant relationship between the percent difference from the ensemble mean and the 188 

concentrations measured by each method (Figure 2); however, some trends were observed. Flow cytometry 189 

concentrations were typically less than ensemble means, whereas membrane filtration concentrations were typically 190 

above the ensemble means.  The precision of different methods was measured by the percent coefficient of variation 191 

(CV) between sample replicates.  Membrane filtration and direct counting showed the lowest mean CV (Table 2).  192 

The highest CVs were calculated from the ensemble means, demonstrating that the variation among sample methods 193 

was greater than sample variations among subsamples analyzed by the various methods used in this workshop.  194 
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In this study, the cell-enumeration techniques were primarily evaluated by precision of estimated 195 

phytoplankton concentrations.  However, other factors should be considered when using these techniques for other 196 

purposes: sample volume and sample analysis rate, ease of use, and documentation of results.  The FlowCAM® has 197 

the advantage of documenting (by collecting an image of) all objects passing through the flow cell (Poulton and 198 

Martin 2010), and objects with similar properties (e.g. circularity, length, etc.) can be categorized.  The FlowCAM® 199 

also acts as particle counter and collects light scatter and fluorescence intensity signals similar to a flow cytometer.  200 

Interchangeable flow cells allow for the use of different objective lenses and magnifications.  However, changing 201 

the flow cell likely changes the fluorescence and light scattering measurements.  The flow cells generally allow a 202 

higher rate of sample analysis than flow cytometers (approximately 80 µl min-1 vs. 60 µl min-1, respectively).  203 

Without the use of sheath fluid to hydrodynamically focus the sample stream (as in flow cytometry), some imaged 204 

particles were out of focus, and the unfocused sample stream also likely contributes to variability in light scattering.  205 

This method was the only method tested that labeled cells as “unknown” in addition to “live” and “dead” and will 206 

likely have trouble identifying cells with generic, non-descript features. 207 

Using flow cytometry, samples were analyzed at approximately 60 µl min-1.  Particles passing through the 208 

interrogation point are hydrodynamically focused and, therefore, variations in the light scattering signals and 209 

fluorescence intensity should not vary due to the location of the particle in the flow cell (as may be the case for the 210 

FlowCAM®).  However, the actual size of particles is not measured directly.  Often, calibrated microbeads with a 211 

known diameter are used to roughly approximate size based upon the light scattering signals.  This approach 212 

provides an estimate of particle size but cannot verify the dimension of the object, much less other properties such as 213 

circularity or aspect ratios.  As such, it will be difficult to identify different species in a mixed assemblage using 214 

flow cytometry as opposed to FlowCAM®, which images each organism. Furthermore, with both FlowCAM® and 215 

flow cytometry, a sample reservoir is used to feed the sample into the fluidics system.  There is a potential that, over 216 

long sample analysis periods (required for large sample volumes to reduce counting errors with low density 217 

samples), non-neutrally buoyant particles or swimming cells will sink or float.  This process can lead to incorrect 218 

estimates of cell concentrations as swimming cells and particles fractionate in the sample reservoir. Additionally, it 219 

may be difficult to processes a sufficient volume of sample before live cells begin to die due to handling stress. 220 

Both Sedgewick-Rafter counting chambers (McAlice 1971) and combining membrane filtration with 221 

epifluorecence microscopy (Hobbie et al. 1977) have been used for decades for counting planktonic organisms, and 222 
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the operating parameters and limitations for these methods have been well documented.  For example, uneven 223 

distributions of cells either in the counting chamber or on the membrane filter generate inaccurate results (Andersen 224 

and Throndsen 2003).  Also, the fading of the fluorescence signal (i.e., photobleaching) can occur as samples are 225 

exposed to light.  Another limitation is the longer sample analysis time and lower volumes of sample that can be 226 

analyzed.  This is especially true with Sedgewick Rafter counting chambers, where the maximum sample volume is 227 

1 ml and the limit of detection is 1000 cells L-1 if no concentration steps are employed (LeGresley and McDermott 228 

2010). The sample volume can be adjusted for membrane filtration and higher volumes can be filtered to detect 229 

sparse populations (Booth 1993).  Furthermore, the filter pore size can be selected to target specific size classes (e.g. 230 

> 10 µm).  One disadvantage of membrane filtration is that cells cannot be viewed with brightfield illumination as 231 

the membrane filter distorts the image, and identifying different species and taxa would be difficult.  The sample 232 

processing rate for manual microscopy, therefore, is highly dependent upon the volume filtered, the percentage of 233 

the chamber or filter surveyed, and other factors such as the cell concentration and the amount of debris. 234 

Additionally, manual microscopy allows for classifying and imaging individual organisms; however, identifying 235 

specific species generally requires a high level of taxonomic skill (Karlson et al. 2010).   236 

Although concentration estimates from the methods evaluated in this workshop were within 2x of each 237 

other, a fairly high variation among methods was observed.  In some cases, the variation could affect whether the 238 

sample meets the IMO discharge standard of < 10 cells ml-1.  For example, in Sample 4, flow cytometry measured 8 239 

viable cells ml-1; other methods measured > 20 cells ml-1.  For techniques used to detect sparse populations from 240 

treated ballast water discharge, it is important to validate that the method is sensitive enough to detect low densities 241 

of viable organisms.  Also, as seen from the variable results between samples, it may be most efficient to perfect a 242 

single technique for the purpose of testing treated ballast water in order to increase the precision, and most 243 

importantly, techniques must be validated using complex assemblages of natural plankton.   244 

 245 
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 318 

FIGURE CAPTIONS 

Figure 1.  Tetraselmis concentrations measured in six test samples using the counting techniques evaluated in the 319 

workshop: flow cytometry, membrane filtration (‘Filter’), imaging flow cytometry (FlowCAM®), and 320 

Sedgewick Rafter counting chambers using SYTOX.  Mean live and dead Tetraselmis concentrations are 321 

shown with standard deviations. The red dashed line represents the ensemble mean of total cell abundance, 322 

and the black dashed line is the ensemble mean of live cell abundance.  FlowCAM® analysis included cells 323 

that were not distinguished as live or dead.  These cells are classified as unknown.  324 

 325 

Figure 2.  Percent difference from the ensemble sample for all six samples measured using the counting techniques 326 

evaluated in this workshop.  Differences from the live and dead ensemble sample are shown in the top and 327 

bottom panels, respectively.  328 

 329 

Figure 3.  Coefficient of variation (% CV) measured by each method for all six samples compared to mean 330 

Tetraselmis concentration. Live and dead concentrations determined using the counting techniques in the 331 

workshop and the ensemble mean are shown in the top and bottom panels, respectively. 332 
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Table 1.  Estimated cell densities for each method compared to the sample means.  The number of subsamples analyzed by each method ranged 
from 2-6. Samples are listed in order of increasing total cell concentration (cells ml-1). 

  Ensemble Mean % Live 
Flow Cytometry 

SYTOX 
Filtration SYTOX Filtration CMFDA FlowCAM® Sedgewick-Rafter 

Sample Live Total   Live Total Live Total Live Total Live Total Live Total 

1 15 24 63%     15 21 14 21 12 50 19 29 

2 33 83 40% 37 86 55 77 27 77 23 70 23 77 

3 63 135 47% 36 95 87 128 100 198 59 144 32 177 

4 21 186 12% 8 143 30 185 22 201 21 193 26 199 

5 57 266 21% 42 196 71 251 79 259 42 329 53 313 

6 126 580 22% 96 414 300 880 174 955 78 394 17 465 

 

 

 

 



Table 2.  Coefficient of variation (% CV) for all six samples analyzed using the methods evaluated in this workshop: flow cytometry, membrane 
filtration, FlowCAM®, and Sedgewick Rafter counting chambers.  The ensemble mean was calculated from the concentrations measured by each 
method. 

 

 
Live Mean 
CV (±SD) Live Min CV Live Max CV 

Dead Mean 
CV (±SD) Dead Min CV 

Dead Max 
CV 

Ensemble 54 ± 24 22% 87% 59 ± 35 33% 122% 

FC 23 ± 20 9% 63% 28 ± 24 9% 61% 

Filtration 14 ± 8 3% 24% 13 ± 6 4% 20% 

FlowCAM® 20 ± 16 3% 47% 29 ± 9 15% 41% 

SR Slide 29 ± 16 11% 53% 15 ± 5 6% 22% 
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