141 research outputs found

    Salt Dependence of the Tribological Properties of a Surface-Grafted Weak Polycation in Aqueous Solution

    Get PDF
    The nanoscopic adhesive and frictional behaviour of end-grafted poly[2-(dimethyl amino)ethyl methacrylate] (PDMAEMA) films (brushes) in contact with gold- or PDMAEMA-coated atomic force microscope tips in potassium halide solutions with different concentrations up to 300 mM is a strong function of salt concentration. The conformation of the polymers in the brush layer is sensitive to salt concentration, which leads to large changes in adhesive forces and the contact mechanics at the tip–sample contact, with swollen brushes (which occur at low salt concentrations) yielding large areas of contact and friction–load plots that fit JKR behaviour, while collapsed brushes (which occur at high salt concentrations) yield sliding dominated by ploughing, with conformations in between fitting DMT mechanics. The relative effect of the different anions follows the Hofmeister series, with I − collapsing the brushes more than Br − and Cl − for the same salt concentration

    Rapid measurement of intravoxel incoherent motion (IVIM) derived perfusion fraction for clinical magnetic resonance imaging

    Get PDF
    Objective This study aimed to investigate the reliability of intravoxel incoherent motion (IVIM) model derived parameters D and f and their dependence on b value distributions with a rapid three b value acquisition protocol. Materials and methods Diffusion models for brain, kidney, and liver were assessed for bias, error, and reproducibility for the estimated IVIM parameters using b values 0 and 1000, and a b value between 200 and 900, at signal-to-noise ratios (SNR) 40, 55, and 80. Relative errors were used to estimate optimal b value distributions for each tissue scenario. Sixteen volunteers underwent brain DW-MRI, for which bias and coefficient of variation were determined in the grey matter. Results Bias had a large influence in the estimation of D and f for the low-perfused brain model, particularly at lower b values, with the same trends being confirmed by in vivo imaging. Significant differences were demonstrated in vivo for estimation of D (P = 0.029) and f (P < 0.001) with [300,1000] and [500,1000] distributions. The effect of bias was considerably lower for the high-perfused models. The optimal b value distributions were estimated to be brain500,1000, kidney300,1000, and liver200,1000. Conclusion IVIM parameters can be estimated using a rapid DW-MRI protocol, where the optimal b value distribution depends on tissue characteristics and compromise between bias and variability

    A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks

    Get PDF
    Over long timescales, neuronal dynamics can be robust to quite large perturbations, such as changes in white matter connectivity and grey matter structure through processes including learning, aging, development and certain disease processes. One possible explanation is that robust dynamics are facilitated by homeostatic mechanisms that can dynamically rebalance brain networks. In this study, we simulate a cortical brain network using the Wilson-Cowan neural mass model with conduction delays and noise, and use inhibitory synaptic plasticity (ISP) to dynamically achieve a spatially local balance between excitation and inhibition. Using MEG data from 55 subjects we find that ISP enables us to simultaneously achieve high correlation with multiple measures of functional connectivity, including amplitude envelope correlation and phase locking. Further, we find that ISP successfully achieves local E/I balance, and can consistently predict the functional connectivity computed from real MEG data, for a much wider range of model parameters than is possible with a model without ISP

    Towards a derivation of holographic entanglement entropy

    Full text link
    We provide a derivation of holographic entanglement entropy for spherical entangling surfaces. Our construction relies on conformally mapping the boundary CFT to a hyperbolic geometry and observing that the vacuum state is mapped to a thermal state in the latter geometry. Hence the conformal transformation maps the entanglement entropy to the thermodynamic entropy of this thermal state. The AdS/CFT dictionary allows us to calculate this thermodynamic entropy as the horizon entropy of a certain topological black hole. In even dimensions, we also demonstrate that the universal contribution to the entanglement entropy is given by A-type trace anomaly for any CFT, without reference to holography.Comment: 42 pages, 2 figures, few new ref's and comments adde

    Advancing our understanding of functional genome organisation through studies in the fission yeast

    Get PDF
    Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation

    In Vivo Diffuse Optical Tomography and Fluorescence Molecular Tomography

    Full text link
    corecore