95 research outputs found

    Pyrite-induced hydroxyl radical formation and its effect on nucleic acids

    Get PDF
    BACKGROUND: Pyrite, the most abundant metal sulphide on Earth, is known to spontaneously form hydrogen peroxide when exposed to water. In this study the hypothesis that pyrite-induced hydrogen peroxide is transformed to hydroxyl radicals is tested. RESULTS: Using a combination of electron spin resonance (ESR) spin-trapping techniques and scavenging reactions involving nucleic acids, the formation of hydroxyl radicals in pyrite/aqueous suspensions is demonstrated. The addition of EDTA to pyrite slurries inhibits the hydrogen peroxide-to-hydroxyl radical conversion, but does not inhibit the formation of hydrogen peroxide. Given the stability of EDTA chelation with both ferrous and ferric iron, this suggests that the addition of the EDTA prevents the transformation by chelation of dissolved iron species. CONCLUSION: While the exact mechanism or mechanisms of the hydrogen peroxide-to-hydroxyl radical conversion cannot be resolved on the basis of the experiments reported in this study, it is clear that the pyrite surface promotes the reaction. The formation of hydroxyl radicals is significant because they react nearly instantaneously with most organic molecules. This suggests that the presence of pyrite in natural, engineered, or physiological aqueous systems may induce the transformation of a wide range of organic molecules. This finding has implications for the role pyrite may play in aquatic environments and raises the question whether inhalation of pyrite dust contributes to the development of lung diseases

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Species-specific behavioral patterns correlate with differences in synaptic connections between homologous mechanosensory neurons

    Get PDF
    We characterized the behavioral responses of two leech species, Hirudo verbana and Erpobdella obscura, to mechanical skin stimulation and examined the interactions between the pressure mechanosensory neurons (P cells) that innervate the skin. To quantify behavioral responses, we stimulated both intact leeches and isolated body wall preparations from the two species. In response to mechanical stimulation, Hirudo showed local bending behavior, in which the body wall shortened only on the side of the stimulation. Erpobdella, in contrast, contracted both sides of the body in response to touch. To investigate the neuronal basis for this behavioral difference, we studied the interactions between P cells. Each midbody ganglion has four P cells; each cell innervates a different quadrant of the body wall. Consistent with local bending, activating any one P cell in Hirudo elicited polysynaptic inhibitory potentials in the other P cells. In contrast, the P cells in Erpobdella had excitatory polysynaptic connections, consistent with the segment-wide contraction observed in this species. In addition, activating individual P cells caused asymmetrical body wall contractions in Hirudo and symmetrical body wall contractions in Erpobdella. These results suggest that the different behavioral responses in Erpobdella and Hirudo are partly mediated by interactions among mechanosensory cells

    Evaluating the use of 3'-(p-Aminophenyl) fluorescein for determining the formation of highly reactive oxygen species in particle suspensions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given the importance of highly reactive oxygen species (hROS) as reactants in a wide range of biological, photochemical, and environmental systems there is an interest in detection and quantification of these species. The extreme reactivity of the hROS, which includes hydroxyl radicals, presents an analytical challenge. 3'-(<it>p</it>-Aminophenyl) fluorescein (APF) is a relatively new probe used for measuring hROS. Here, we further evaluate the use of APF as a method for the detection of hydroxyl radicals in particle suspensions.</p> <p>Results</p> <p>Particle-generated hROS can be quantified with an estimated detection limit of 50 nM. Measurements of hROS in two National Institute of Standards and Technology (NIST 2709 and 2710) soil suspensions and a pyrite suspension show non-linear particle dose-response curves for hROS generation. APF can also be used in solutions containing no dissolved molecular oxygen (O<sub>2</sub>) to determine the role of O<sub>2 </sub>in the formation of hROS. Results confirm that O<sub>2 </sub>is mechanistically important in the formation of hROS by dissolved ferrous iron and in pyrite suspensions.</p> <p>Conclusion</p> <p>Given the non-linear dose-response curves for particle generation of hROS, we recommend using several particle loadings in experiments aimed to compare particles for their hROS generation potential. The method presented here is specific to hROS and simple to perform. The analysis can be conducted in mobile labs as only basic laboratory equipment is required.</p

    Automatic Filtering and Substantiation of Drug Safety Signals

    Get PDF
    Drug safety issues pose serious health threats to the population and constitute a major cause of mortality worldwide. Due to the prominent implications to both public health and the pharmaceutical industry, it is of great importance to unravel the molecular mechanisms by which an adverse drug reaction can be potentially elicited. These mechanisms can be investigated by placing the pharmaco-epidemiologically detected adverse drug reaction in an information-rich context and by exploiting all currently available biomedical knowledge to substantiate it. We present a computational framework for the biological annotation of potential adverse drug reactions. First, the proposed framework investigates previous evidences on the drug-event association in the context of biomedical literature (signal filtering). Then, it seeks to provide a biological explanation (signal substantiation) by exploring mechanistic connections that might explain why a drug produces a specific adverse reaction. The mechanistic connections include the activity of the drug, related compounds and drug metabolites on protein targets, the association of protein targets to clinical events, and the annotation of proteins (both protein targets and proteins associated with clinical events) to biological pathways. Hence, the workflows for signal filtering and substantiation integrate modules for literature and database mining, in silico drug-target profiling, and analyses based on gene-disease networks and biological pathways. Application examples of these workflows carried out on selected cases of drug safety signals are discussed. The methodology and workflows presented offer a novel approach to explore the molecular mechanisms underlying adverse drug reactions

    Factors affecting survival in Mediterranean populations of the Eurasian eagle owl

    Get PDF
    The survival rate is a key parameter for population management and the monitoring of populations. Thus, an analysis of survival rate variations and the factors influencing the same is essential for understanding population dynamics. Here, we study the factors determining the survival and the causes of mortality of the Eurasian eagle owl (Bubo bubo) in two Spanish Mediterranean populations (Murcia and Seville) where the species has a high population density and breeding success; yet its survival rates and the factors that affect them are unknown. Between 2003 and 2010, 63 breeding owls were captured and radio-tracked. Three monthly (quarterly) survival rates were estimated using known-fate models in the program MARK. The mean overall annual survival rate was 0.776 (95 % CI: 0.677, 0.875). We observed survival differences between sexes, and between the breeding and non-breeding periods, although no overwhelming support was found for any particular model. We concluded that (i) females have a lower survival rate than males, probably due to their larger home ranges, which increase the risk of mortality; (ii) the survival rates of both sexes were lower during the non-breeding period; and (iii) the causes of mortality differed significantly between the two populations, gunshot being the main cause in Seville and electrocution in Murcia.Peer Reviewe
    corecore