23,946 research outputs found

    Laboratory mid-IR spectra of equilibrated and igneous meteorites. Searching for observables of planetesimal debris

    Full text link
    Meteorites contain minerals from Solar System asteroids with different properties (like size, presence of water, core formation). We provide new mid-IR transmission spectra of powdered meteorites to obtain templates of how mid-IR spectra of asteroidal debris would look like. This is essential for interpreting mid-IR spectra of past and future space observatories, like the James Webb Space Telescope. We show that the transmission spectra of wet and dry chondrites, carbonaceous and ordinary chondrites and achondrite and chondrite meteorites are distinctly different in a way one can distinguish in astronomical mid-IR spectra. The two observables that spectroscopically separate the different meteorites groups (and thus the different types of parent bodies) are the pyroxene-olivine feature strength ratio and the peak shift of the olivine spectral features due to an increase in the iron concentration of the olivine

    The lunar phases of dust grains orbiting Fomalhaut

    Get PDF
    Optical images of the nearby star Fomalhaut show a ring of dust orbiting the central star. This dust is in many respects expected to be similar to the zodiacal dust in the solar system. The ring displays a clear brightness asymmetry, attributed to asymmetric scattering of the central starlight by the circumstellar dust grains. Recent measurements show that the bright side of the Fomalhaut ring is oriented away from us. This implies that the grains in this system scatter most of the light in the backward direction, in sharp contrast to the forward-scattering nature of the grains in the solar system. In this letter, we show that grains considerably larger than those dominating the solar system zodiacal dust cloud provide a natural explanation for the apparent backward scattering behavior. In fact, we see the phases of the dust grains in the same way as we can observe the phases of the Moon and other large solar system bodies. We outline how the theory of the scattering behavior of planetesimals can be used to explain the Fomalhaut dust properties. This indicates that the Fomalhaut dust ring is dominated by very large grains. The material orbiting Fomalhaut, which is at the transition between dust and planetesimals, can, with respect to their optical behavior, best be described as micro-asteroids.Comment: Accepted for publication in A&

    Charge ordering in doped manganese oxides: lattice dynamics and magnetic structure

    Full text link
    Based on the Hamiltonian of small polarons with the strong nearest neighbor repulsion, we have investigated the charge ordering phenomena observed in half-doped manganites R_{1/2}A_{1/2}MnO_3. We have explored possible consequences of the charge ordering phase in the half-doped manganites. First, we have studied the renormalization of the sound velocity around TCOT_{CO}, considering the acoustic phonons coupled to the electrons participating in the charge ordering. Second, we have found a new antiferromagnetic phase induced by the charge ordering, and discussed its role in connection with the specific CE-type antiferromagnetic structure observed in half-doped manganites.Comment: 5 pages, 2 Postscript figures. To appear in Phys. Rev. B - Rapid Comm. (01Jun97

    Spectroscopic diagnostic for the mineralogy of large dust grains

    Get PDF
    We examine the thermal infrared spectra of large dust grains of different chemical composition and mineralogy. Strong resonances in the optical properties result in detectable spectral structure even when the grain is much larger than the wavelength at which it radiates. We apply this to the thermal infrared spectra of compact amorphous and crystalline silicates. The weak resonances of amorphous silicates at 9.7 and 18 micron virtually disappear for grains larger than about 10 micron. In contrast, the strong resonances of crystalline silicates produce emission dips in the infrared spectra of large grains; these emission dips are shifted in wavelength compared to the emission peaks commonly seen in small crystalline silicate grains. We discuss the effect of a fluffy or compact grain structure on the infrared emission spectra of large grains, and apply our theory to the dust shell surrounding Vega.Comment: Submitted to A&A Letter

    Parametric study in weld mismatch of longitudinally welded SSME HPFTP inlet

    Get PDF
    Welded joints are an essential part of pressure vessels such as the Space Shuttle Main Engine (SSME) Turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet x rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered. Using the finite element method and mathematical formulations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thickness on both sides of the joint. From the study, the finite element results and theoretical solutions are presented

    Superspace Formulation in a Three-Algebra Approach to D=3, N=4,5 Superconformal Chern-Simons Matter Theories

    Full text link
    We present a superspace formulation of the D=3, N=4,5 superconformal Chern-Simons Matter theories, with matter supermultiplets valued in a symplectic 3-algebra. We first construct an N=1 superconformal action, and then generalize a method used by Gaitto and Witten to enhance the supersymmetry from N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra properly and proposing a new super-potential term, we construct the N=4 superconformal Chern-Simons matter theories in terms of two sets of generators of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by requiring that the supersymmetry transformations are closed on-shell. The relationship between the 3-algebras, Lie superalgebras, Lie algebras and embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also clarified. The general N=4,5 superconformal Chern-Simons matter theories in terms of ordinary Lie algebras can be rederived in our 3-algebra approach. All known N=4,5 superconformal Chern-Simons matter theories can be recovered in the present superspace formulation for super-Lie-algebra realization of symplectic 3-algebras.Comment: 37 pages, minor changes, published in PR

    Dust-grain processing in circumbinary discs around evolved binaries. The RV Tauri spectral twins RU Cen and AC Her

    Get PDF
    Context: We study the structure and evolution of circumstellar discs around evolved binaries and their impact on the evolution of the central system. Aims: To study in detail the binary nature of RUCen and ACHer, as well as the structure and mineralogy of the circumstellar environment. Methods: We combine multi-wavelength observations with a 2D radiative transfer study. Our radial velocity program studies the central stars, while our Spitzer spectra and broad-band SEDs are used to constrain mineralogy, grain sizes and physical structure of the circumstellar environment. Results: We determine the orbital elements of RUCen showing that the orbit is highly eccentric with a rather long period of 1500 days. The infrared spectra of both objects are very similar and the spectral dust features are dominated by Mg-rich crystalline silicates. The small peak-to-continuum ratios are interpreted as being due to large grains. Our model contains two components with a cold midplain dominated by large grains, and the near- and mid-IR which is dominated by the emission of smaller silicates. The infrared excess is well modelled assuming a hydrostatic passive irradiated disc. The profile-fitting of the dust resonances shows that the grains must be very irregular. Conclusions: These two prototypical RVTauri pulsators with circumstellar dust are binaries where the dust is trapped in a stable disc. The mineralogy and grain sizes show that the dust is highly processed, both in crystallinity and grain size. The cool crystals show that either radial mixing is very efficient and/or that the thermal history at grain formation has been very different from that in outflows. The physical processes governing the structure of these discs are similar to those observed in protoplanetary discs around young stellar objects.Comment: 11 pages, 12 figures, accepted for publication by A&

    Ultra-high-Q microcavity operation in H2O and D2O

    Get PDF
    Optical microcavities provide a possible method for boosting the detection sensitivity of biomolecules. Silica-based microcavities are important because they are readily functionalized, which enables unlabeled detection. While silica resonators have been characterized in air, nearly all molecular detections are performed in solution. Therefore, it is important to determine their performance limits in an aqueous environment. In this letter, planar microtoroid resonators are used to measure the relationship between quality factor and toroid diameter at wavelengths ranging from visible to near-IR in both H2O and D2O, and results are then compared to predictions of a numerical model. Quality factors (Q) in excess of 10^8, a factor of 100 higher than previous measurements in an aqueous environment, are observed in both H2O and D2O

    The composition and size distribution of the dust in the coma of comet Hale-Bopp

    Full text link
    We discuss the composition and size distribution of the dust in the coma of comet Hale-Bopp. We do this by fitting simultaneously the infrared emission spectrum measured by the infrared space observatory (ISO) and the measured degree of linear polarization of scattered light at various phase angles and 12 different wavelengths. The effects of particle shape on the modeled optical properties of the dust grains are taken into account. We constrain our fit by forcing the abundances of the major rock forming chemical elements to be solar. The infrared spectrum at long wavelengths reveals that large grains are needed in order to fit the spectral slope. The size and shape distribution we employ allows us to estimate the sizes of the crystalline silicates. The ratios of the strength of various forsterite features show that the crystalline silicate grains in Hale-Bopp must be submicron sized. We exclude the presence of large crystalline silicate grains in the coma. Because of this lack of large crystalline grains combined with the fact that we do need large amorphous grains to fit the emission spectrum at long wavelengths, we need only approximately 4% of crystalline silicates by mass. After correcting for possible hidden crystalline material included in large amorphous grains, our best estimate of the total mass fraction of crystalline material is approximately 7.5%, significantly lower than deduced in previous studies in which the typical derived crystallinity is 20-30%. The implications of this on the possible origin and evolution of the comet are discussed. The crystallinity we observe in Hale-Bopp is consistent with the production of crystalline silicates in the inner solar system by thermal annealing and subsequent radial mixing to the comet forming region.Comment: Accepted for publication in Icaru
    corecore