We present a superspace formulation of the D=3, N=4,5 superconformal
Chern-Simons Matter theories, with matter supermultiplets valued in a
symplectic 3-algebra. We first construct an N=1 superconformal action, and then
generalize a method used by Gaitto and Witten to enhance the supersymmetry from
N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra
properly and proposing a new super-potential term, we construct the N=4
superconformal Chern-Simons matter theories in terms of two sets of generators
of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by
requiring that the supersymmetry transformations are closed on-shell. The
relationship between the 3-algebras, Lie superalgebras, Lie algebras and
embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H.
Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also
clarified. The general N=4,5 superconformal Chern-Simons matter theories in
terms of ordinary Lie algebras can be rederived in our 3-algebra approach. All
known N=4,5 superconformal Chern-Simons matter theories can be recovered in the
present superspace formulation for super-Lie-algebra realization of symplectic
3-algebras.Comment: 37 pages, minor changes, published in PR