Meteorites contain minerals from Solar System asteroids with different
properties (like size, presence of water, core formation). We provide new
mid-IR transmission spectra of powdered meteorites to obtain templates of how
mid-IR spectra of asteroidal debris would look like. This is essential for
interpreting mid-IR spectra of past and future space observatories, like the
James Webb Space Telescope. We show that the transmission spectra of wet and
dry chondrites, carbonaceous and ordinary chondrites and achondrite and
chondrite meteorites are distinctly different in a way one can distinguish in
astronomical mid-IR spectra. The two observables that spectroscopically
separate the different meteorites groups (and thus the different types of
parent bodies) are the pyroxene-olivine feature strength ratio and the peak
shift of the olivine spectral features due to an increase in the iron
concentration of the olivine