954 research outputs found

    Effective Two Higgs Doublets in Nonminimal Supersymmetric Models

    Full text link
    The Higgs sectors of supersymmetric extensions of the Standard Model have two doublets in the minimal version (MSSM), and two doublets plus a singlet in two others: with (UMSSM) and without (NMSSM) an extra U(1)'. A very concise comparison of these three models is possible if we assume that the singlet has a somewhat larger breaking scale compared to the electroweak scale. In that case, the UMSSM and the NMSSM become effectively two-Higgs-doublet models (THDM), like the MSSM. As expected, the mass of the lightest CP-even neutral Higgs boson has an upper bound in each case. We find that in the NMSSM, this bound exceeds not very much that of the MSSM, unless tan(beta) is near one. However, the upper bound in the UMSSM may be substantially enhanced.Comment: 8 pages, 1 table, 3 figure

    SUSY-QCD decoupling properties in H+ -> t \bar b decay

    Full text link
    The SUSY-QCD radiative corrections to the \Gamma (H+ -> t \bar b) partial decay width are analyzed within the Minimal Supersymmetric Standard Model at the one-loop level, {\mathcal O}(\alpha_s), and in the decoupling limit. We present the analytical expressions of these corrections in the large SUSY masses limit and study the decoupling behaviour of these corrections in various limiting cases. We find that if the SUSY mass parameters are large and of the same order, the one loop SUSY-QCD corrections {\it do not decouple}. The non-decoupling contribution is enhanced by \tan \beta and therefore large corrections are expected in the large \tan \beta limit. In contrast, we also find that the SUSY-QCD corrections decouple if the masses of either the squarks or the gluinos are separately taken large.Comment: LaTeX, 33 pages, 7 figure included. Uses cite.st

    A New Relativistic High Temperature Bose-Einstein Condensation

    Get PDF
    We discuss the properties of an ideal relativistic gas of events possessing Bose-Einstein statistics. We find that the mass spectrum of such a system is bounded by Ό≀m≀2M/ÎŒK,\mu \leq m\leq 2M/\mu _K, where ÎŒ\mu is the usual chemical potential, MM is an intrinsic dimensional scale parameter for the motion of an event in space-time, and ÎŒK\mu _K is an additional mass potential of the ensemble. For the system including both particles and antiparticles, with nonzero chemical potential ÎŒ,\mu , the mass spectrum is shown to be bounded by âˆŁÎŒâˆŁâ‰€m≀2M/ÎŒK,|\mu |\leq m\leq 2M/\mu _K, and a special type of high-temperature Bose-Einstein condensation can occur. We study this Bose-Einstein condensation, and show that it corresponds to a phase transition from the sector of continuous relativistic mass distributions to a sector in which the boson mass distribution becomes sharp at a definite mass M/ÎŒK.M/\mu _K. This phenomenon provides a mechanism for the mass distribution of the particles to be sharp at some definite value.Comment: Latex, 22 page

    Effects of Impurity Content on the Sintering Characteristics of Plasma-Sprayed Zirconia

    No full text
    Yttria-stabilized zirconia powders, containing different levels of SiO2 and Al2O3, have been plasma sprayed onto metallic substrates. The coatings were detached from their substrates and a dilatometer was used to monitor the dimensional changes they exhibited during prolonged heat treatments. It was found that specimens containing higher levels of silica and alumina exhibited higher rates of linear contraction, in both in-plane and through-thickness directions. The in-plane stiffness and the through-thickness thermal conductivity were also measured after different heat treatments and these were found to increase at a greater rate for specimens with higher impurity (silica and alumina) levels. Changes in the pore architecture during heat treatments were studied using Mercury Intrusion Porosimetry (MIP). Fine scale porosity (<_50 nm) was found to be sharply reduced even by relatively short heat treatments. This is correlated with improvements in inter-splat bonding and partial healing of intra-splat microcracks, which are responsible for the observed changes in stiffness and conductivity, as well as the dimensional changes

    Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter's great red spot

    Full text link
    We introduce a new set of generalized Fokker-Planck equations that conserve energy and mass and increase a generalized entropy until a maximum entropy state is reached. The concept of generalized entropies is rigorously justified for continuous Hamiltonian systems undergoing violent relaxation. Tsallis entropies are just a special case of this generalized thermodynamics. Application of these results to stellar dynamics, vortex dynamics and Jupiter's great red spot are proposed. Our prime result is a novel relaxation equation that should offer an easily implementable parametrization of geophysical turbulence. This relaxation equation depends on a single key parameter related to the skewness of the fine-grained vorticity distribution. Usual parametrizations (including a single turbulent viscosity) correspond to the infinite temperature limit of our model. They forget a fundamental systematic drift that acts against diffusion as in Brownian theory. Our generalized Fokker-Planck equations may have applications in other fields of physics such as chemotaxis for bacterial populations. We propose the idea of a classification of generalized entropies in classes of equivalence and provide an aesthetic connexion between topics (vortices, stars, bacteries,...) which were previously disconnected.Comment: Submitted to Phys. Rev.

    The Neutralino Sector in the U(1)-Extended Supersymmetric Standard Model

    Full text link
    Motivated by grand unified theories and string theories we analyze the general structure of the neutralino sector in the USSM, an extension of the Minimal Supersymmetric Standard Model that involves a broken extra U(1) gauge symmetry. This supersymmetric U(1)-extended model includes an Abelian gauge superfield and a Higgs singlet superfield in addition to the standard gauge and Higgs superfields of the MSSM. The interactions between the MSSM fields and the new fields are in general weak and the mixing is small, so that the coupling of the two subsystems can be treated perturbatively. As a result, the mass spectrum and mixing matrix in the neutralino sector can be analyzed analytically and the structure of this 6-state system is under good theoretical control. We describe the decay modes of the new states and the impact of this extension on decays of the original MSSM neutralinos, including radiative transitions in cross-over zones. Production channels in cascade decays at the LHC and pair production at e+e−e^+e^- colliders are also discussed.Comment: 50 pages, 9 figures, equations.sty include

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops

    Spin Analysis of Supersymmetric Particles

    Full text link
    The spin of supersymmetric particles can be determined at e+e−e^+e^- colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e+e−e^+e^- collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza-Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e+e−e^+e^- collider.Comment: 39 pages, 14 figure

    b-physics signals of the lightest CP-odd Higgs in the NMSSM at large tan beta

    Full text link
    We investigate the low energy phenomenology of the lighter pseudoscalar A10A_1^0 in the NMSSM. The A10A_1^0 mass can naturally be small due to a global U(1)RU(1)_R symmetry of the Higgs potential, which is only broken by trilinear soft terms. The A10A_1^0 mass is further protected from renormalization group effects in the large tan⁥ÎČ\tan \beta limit. We calculate the b→sA10b \to s A_1^0 amplitude at leading order in tan⁥ÎČ\tan \beta and work out the contributions to rare KK, BB and radiative ΄\Upsilon-decays and B−BˉB -\bar B mixing. We obtain constraints on the A10A_1^0 mass and couplings and show that masses down to O(10){\cal{O}}(10) MeV are allowed. The bb-physics phenomenology of the NMSSM differs from the MSSM in the appearance of sizeable renormalization effects from neutral Higgses to the photon and gluon dipole operators and the breakdown of the MSSM correlation between the Bs→Ό+Ό−B_s \to \mu^+ \mu^- branching ratio and Bs−BˉsB_s - \bar B_s mixing. For A10A_1^0 masses above the tau threshold the A10A_1^0 can be searched for in b→sτ+τ−b \to s \tau^+ \tau^- processes with branching ratios \lsim 10^{-3}.Comment: 18 pages, 3 figures; references adde
    • 

    corecore