2,135 research outputs found

    Ocean acidification and the loss of phenolic substances in marine plants.

    Get PDF
    Rising atmospheric CO(2) often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2) availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2) enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2) / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO(2) vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO(2) concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO(2) vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be "winners" in a high CO(2) world

    Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: New metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Get PDF
    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD-coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation-were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria-Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step

    A Procedure to Calibrate a Multi-Modular Telescope

    Full text link
    A procedure has been developed for the charge, mass and energy calibration of ions produced in nuclear heavy ion reactions. The charge and mass identification are based on a Δ\DeltaE-E technique. A computer code determines the conversion from ADC channels into energy values, atomic number and mass of the detected fragments by comparing with energy loss calculations through a minimization routine. The procedure does not need prior measurements with beams of known energy and charge. An application of this technique to the calibration of the MULTICS apparatus is described.Comment: 9 pages, Tex file, 3 postscript figures available upon request from [email protected]; to appear in Nucl. Inst. Met

    Comparazione di metodi termovisivi per l’identificazione di aree umide su materiali dell’edilizia storica

    Get PDF
    Water content inside building materials (plaster, brick, stone) is usefull to evaluate their decay level. Passive and active termography are compared, in order to define the most reliable procedure, firstly to map the moisture diffusion and secondary to evaluate the moisture content in the surfaces. Laboratory researches carried out in the last decades and scientific literature permitted to determine that the superficial decay in porous materials is more related to the evaporative speed of the surfaces and the presence of soluble salts than to their absorption capability. Moreover, evaporative fluxes were studied at different environmental conditions and water content in order to find out a correlation between moisture content, evaporation and boundary conditions. The thermal characteristics of timber are highly different from the characteristics of porous materials such as brick and stone and mortar, particularly the thermal capacity of wood is lower. Nevertheless, because of the lower heat capacity of wood, the presence of water greatly affects the wood thermal capacity: the active procedure, guarantees the best results. Lab tests and study case permit to evaluate the sensitivity of the method

    Dual Boundary Element Method for fatigue crack growth: implementation of the Richard\u2019s criterion

    Get PDF
    A new criterion for fatigue crack growth, whose accuracy was previously tested in the literature with the Finite Element Method, is here adopted with a Dual Boundary Element formulation. The fatigue crack growth of an elliptical inclined crack, embedded in a three dimensional cylindrical bar, is analyzed. In this way in addition to the propagation angle estimated by the Sih\u2019s criterion, it is possible to take into account a twist propagation angle. The two propagation criteria are compared in terms of shape of the propagated crack and in terms of SIFs along the crack front. The efficiency of the Dual Boundary Element Method in this study is highlighted
    • …
    corecore