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Abstract. A new criterion for fatigue crack growth, whose accuracy was previously tested in the literature 

with the Finite Element Method, is here adopted with a Dual Boundary Element formulation. The fatigue 

crack growth of an elliptical inclined crack, embedded in a three dimensional cylindrical bar, is analyzed. 

In this way in addition to the propagation angle estimated by the Sih’s criterion, it is possible to take into 

account a twist propagation angle. The two propagation criteria are compared in terms of shape of the 

propagated crack and in terms of SIFs along the crack front. The efficiency of the Dual Boundary Element 

Method in this study is highlighted. 

Introduction 

It is well established that computational modeling may provide a formidable tool for design and 

maintenance of engineering structures. 

To date the boundary element method (BEM) has proved very effective for fracture mechanics problems, 

without the limitations of an extremely refined mesh in the crack tip, and the requirement of a continuous 

re-meshing for crack growth simulations typical of the finite element method (FEM) [1]. 

The Dual Boundary Element Method (DBEM), developed by Portela, Aliabadi and Rooke [2] for 2D 

problems and then by Mi and Aliabadi [3] for 3D problems, appears to be a more general and 

computationally efficient way to model crack problems with respect to the multi-region method developed 

by Blandford et al. [4]. The DBEM is a single region formulation, applying the displacement boundary 

equation on one crack surface and the traction boundary equation on the other. The advantage of the 

method is its robustness in modeling the crack growth, with need of little re-meshing of the original model. 

It is well-known that a sequence of increasing and decreasing loads, could lead to an increase in the crack 

front at each step, even though the maximum stress intensity factor may be much less than the critical 

value; in the framework of the linear fracture mechanics it is possible to use the Paris law [5], that 

nowadays has gained general acceptance, to predict the crack incremental size. 

On the other hand, there is no unique accepted criterion regarding crack growth direction, especially for 3D 

cases; the most common and used criterion, for its precision and versatility in numerical simulation but also 

for the possibility to use it both in two and three dimensions, is the minimum strain energy density criterion 

formulated by Sih [6]; even if it is the most used criterion, it has a some drawback: in three dimensional 

cases it is insensitive to Mode III stress intensity factors, and for this reason, the twist propagation angle is 

always equal to zero. 

In the present study the numerical simulation of the crack growth of an embedded inclined elliptical crack 

subjected to Mixed Mode load conditions is presented, adopting a new criterion by Richard [7], that being 

sensitive to Mode III, estimates the crack’s twisting. As results the propagated crack patterns for the two 

different criteria are shown. Furthermore, for the Richard’s criterion, the trend of the crack growth angles 

and stress intensity factors along the crack front are presented, together with comparison graphics between 

Sih’s and Richard’s results. 
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Dual Boundary Element Method 

 

Dual Boundary Integral Equation Formulation for Crack Problems. Let us consider a cracked body 

and let    and    be the upper and lower crack surfaces, and    the rest of the boundary. The DBEM 

formulation is obtained by collocating the displacement integral equation on the boundary and on one of 

the crack surfaces and the traction boundary integral equation on the other crack face. 

The equation collocated on the boundary is the classical one and it is not recalled here, while the equations 

written for the crack surfaces are: 
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Where               
 (    )  and    

 (    ) are respectively Kelvin displacement and traction 

fundamental solutions,     
 (    ) and     

 (    ) are obtained from the derivatives of the fundamental 

solutions; in eq.(1) the integral at the left-hand side is a Cauchy principal value integral as the integral at 

the right-hand side of eq.(2); while the first integral in eq.(2) stands for an Hadamard  principal value 

integral.  

Crack Modelling Strategy. The strategy used for DBEM modelling is given in [3] and it can be 

summarized in the following points 

 The crack boundaries are modeled with discontinuous quadratic elements;  

 The surfaces intersecting a crack surface are modeled with edge-discontinuous quadrilateral and 

triangular quadratic elements; 

 Continuous quadratic elements are used along the remaining boundary; 

 For collocation on the crack surface    the displacement equation in eq.(1) is applied; 

 For collocation on the other crack surface    the traction equation in eq.(2) is applied; 

 The usual boundary displacement equation is applied for collocation on all other surfaces. 

For further details the interested reader is referred to [3]. 

Fatigue Crack Growth 

When a cracked body is subjected to a generic loading system, the movements of the upper and lower 

surfaces of the crack with respect to each other can be described using three basic modes: 

 Mode I or opening mode, where the two crack surfaces are pulled apart; 

 Mode II or sliding mode, where the two crack surfaces slide over each other along the crack line; 

 Mode III or tearing mode, where the crack surfaces slide over each other perpendicular to the crack 

line. 

With the superposition of these three basic modes any crack deformation can be described, and under the 

hypothesis of linear elastic fracture mechanics (LEFM), the determination of the rate of crack growth in a 

loaded structure subjected to fatigue loading is correlated only to the knowledge of the stress intensity  

factors, in this way the behavior of the cracked body can be fully described. 

The fatigue loading is a sequence of increasing and decreasing load (cyclic), that can lead to an increase in 

crack front even if the maximum stress intensity factor may be much less than the critical one. 

The goal for the designer is to establish the necessary number of cycles for a crack to extend from some 

initial length to a pre-imposed one.  

The typical Paris’ sigmoidal curve relates the rate of crack growth per load cycle:      , with the applied 

stress intensity factor range:              ; in this log-log plot can be recognized three different 

zones [5]: 



 The first region, where the crack growth goes asymptotically to zero as    approaches a threshold   

value:      ; this value represents the fatigue limit,  for stress intensity factors below      there is 

no crack growth; 

 In the second region, the   (    ⁄ )  tends to vary linearly with respect to the     ;  

 In the third region it can be seen a drastic acceleration as      approaches    the fracture toughness 

of the material. 

 

To describe the behaviour in the linear region, Paris et al. [8] developed an empirical formula: 
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To take into account also other factors, among which: load frequency, environment and mean load; Paris 

and Erdogan [5] suggested another law depending on two empirical material constants: C and m. 
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Equation (4) is generally called Paris law, and has gained worldwide acceptance in engineering practice. 

To obtain a generalized fatigue crack growth formula which takes into account the combined effect of 

Mode I and Mode II, Tanaka [9] proposed an expression for    : 
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Criteria for Crack Growth Propagation 

 

 Spatial Mixed Mode problems are characterised by the superposition of the three fracture modes. Exist 

only few fracture criteria to describe 3D Mixed Mode problems, two of them will be described in the 

following with a brief comparison. 

 Minimum Strain Energy Density Criterion (S-Criterion). Formulated by Sih [6] to date is the most 

popular and used criterion for 3D problems, because it seems to be able to handle very well three 

dimensional crack growth, taking into consideration the three stress intensity factors. 

The explicit expression for the strain energy density around the crack front can be written as a function of 

the strain energy density factor:   [7] 
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where  (   ) is given by  
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Where                 depend only by     and   that is the shear modulus of elasticity and   is the 

Poisson’s ratio. The crack angles    and    (elevation and twisting) shown in Fig.1 are derived by 

minimizing   of eq.(7): 
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It is apparent from eq.(7), that the minimum of  ( ) always occurs in the normal plane of the crack front 

curve, namely when             , independently of the Mixed Mode combination; also the partial 

derivative of   by   is independent of    as well as     . 
 



 

 

 

 

 

 

 

 

 

 

 

Therefore this criterion is insensitive to Mode III [7]. 

Richard’s Criterion.  In order to take into account the twist rotation (  angle), considering in this way 

also the Mode III, and to simplify the prediction of crack growth, Richard developing approximation 

functions, proposed a criterion whose efficiency is tested experimentally. 

The angles can be written as: 
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where       for       and       for      . 
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where       for        and       for       . 

With                            eq.(9,10) are in good agreement with the crack deflection 

angles predicted by another criterion: the Schöllmann criterion [7]. 

Richard proposes also an expression for an equivalent stress intensity factor:    to evaluate if an unstable 

crack growth will occur: 
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where          and       are the fracture toughness; also for this expression, if              ⁄  and 

            ⁄  ;  eq.(11) is in a good agreement with the    predicted by the Schöllmann criterion. 

In the same way the fatigue crack growth is possible, only if, defining the cyclic stress intensity factor as in 

eq.(12), it exceeds the threshold value        and is smaller than      . 
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To test the efficiency of this criterion, simulations were performed using the Finite Element Method and 

the program system ADAPCRACK3D [10]. 

 

 

 

 

 

Figure 1:  The two different rotations:   ,   . 



Numerical Simulation of Crack Growth 

 

Experiments are surely a fundamental part to understand the crack behaviour, but they are in most cases 

very expensive; for this reason, becomes necessary the developing of numerical techniques which allow the 

engineer to predict the crack evolution. 

The Finite Element Method has been used in a lot of numerical simulations, by many researchers [11]; but 

the common drawback of this method is the need of a continuous crack re-meshing to follow the crack 

extension, especially when a 3D problem is described.  

The main advantage of the Dual Boundary Element Method, is that the need of a re-meshing procedure is 

practically negligible, by virtue of the boundary formulation, and of the intrinsic characteristic of the single 

region analysis; in this way both embedded and edge crack can be studied with only a localized re-meshing 

on the free surfaces on the breaking cracks as the growth takes place [3,12]. 

To illustrate this procedure a mixed mode 3D crack growth problem is considered here: the fatigue 

cracking process is generated by a constant amplitude cyclic tensile loading applied on the upper and lower 

surfaces of a cylindrical bar of radius   and height   with an embedded inclined elliptical crack [3]. 

Initially crack surfaces are defined and the DBEM, is used to analyze the stress system; the three stress 

intensity factors are evaluated in three nodes for each element that forms the crack front; for a total of 16 

elements and 48 nodes. The incremental direction was calculated using both the Sih and Richard’s 

criterion, to show as the second is sensitive to the Mode III and thus to the twisting rotation. Four 

incremental steps were performed, fixing at each step the maximum incremental crack length at 0.2 times 

the crack semi-major axis. The incremental part of the crack is constructed using the incremental direction 

and size in the form of piecewise surfaces which vary linearly along the crack growth direction. 

After the necessary modification of the boundary mesh, the analysis carries on taking into account the new 

configuration. 

This method can be utilized until the predefined crack length is reached or the effective stress intensity 

factor has exceeded the fracture toughness of the material. 

Determination of Incremental Direction and Size. To perform the incremental analysis is necessary 

to know two different parameters: the direction and the size of the crack incremental extension. 

Using The Sih criterion,    is evaluated in the local coordinate plane perpendicular to the crack front 

Fig.1, minimizing numerically   with respect to    The resultant propagation directions can then be 

referred to the global system of coordinates and expressed as propagation unit vectors. 

The size of the increment is evaluated using the Paris law eq.(4), and since linear elasticity is considered in 

this problem the maximum amount       of the increment corresponds to the crack front point where the 

maximum value of    is reached. 

Therefore, the incremental size at each step, and at each node can be evaluated by : 
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where for     was used the expression proposed by Gerstle, that takes into account all the three stress 

intensity factors: 
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The same procedure is adopted for the Richard’s criterion: for each node the three stress intensity factors 

are evaluated, and so, using eq.(9,10)    and    are known; thus the resultant propagation vector will take 

into account not only the propagation angle evaluated by Sih but also the twisting rotation as shown in 

Fig.1. 

In this way considering  also the Mode III, the pattern of the deformed crack, will be surely more realistic 

and precise. A comparison between the Sih’s and the Richard’s deformed crack pattern, is shown in Fig.2.  

 

 



Figure 3:  Comparison between the deformed crack surfaces with the Sih’s criterion a) and the Richard’s Criterion b) 

               Figure 4:  Crack growth angles along the front estimated with the Richard’s criterion 

 

 

 

The deformed crack surfaces after the last analysis are shown in Fig.3; in Fig.4 are also presented the crack 

growth angles:   and  , along the crack front computed with the Richard’s criterion, and in Fig.5 the three 

stress intensity factors:        and     , corresponding to each analysis normalized by the value of the 

stress applied. 

It is worth to be notice that they are in good agreement with those found by Mi for the same case, using the 

Sih’s criterion [3]. 

 

 

 

               Figure 2:  Comparison between the crack growth path with the Sih’s criterion a) and the Richard’s Criterion b) 



               Figure 5:  Trend of the normalized Stress Intensity Factors:        and      

               Figure 6:  Comparison between the results obtained from Sih (solid lines) and Richard (markers) 

 

 
  

 
 

 

 

 

Fig.(6-7) show respectively the comparison between the   angles and the different stress intensity factors, 

found for each analysis with the Sih’s criterion, represented by the solid lines, and those estimated with the 

Richard’s criterion, represented by the markers. 



               Figure 7:  Comparison between the results obtained from Sih (solid lines) and Richard (markers) 

 

 
Summary 
 

A three-dimensional dual boundary element formulation for the analysis of the fatigue crack growth of an 

embedded inclined elliptical crack subjected to a fracture Mixed Mode has been adopted, to carry out a 

numerical simulation and thus, to estimate the new propagated crack pattern. Two different criteria have 

been used to calculate the crack growth direction, from them comparison a more realistic crack behavior is 

shown using the Richard’s one. In this article are also shown the trends and the comparisons of the crack 

angles and the three stress intensity factors along the crack front, for each propagation. 
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