16 research outputs found

    Atlas of Signaling for Interpretation of Microarray Experiments

    Get PDF
    Microarray-based expression profiling of living systems is a quick and inexpensive method to obtain insights into the nature of various diseases and phenotypes. A typical microarray profile can yield hundreds or even thousands of differentially expressed genes and finding biologically plausible themes or regulatory mechanisms underlying these changes is a non-trivial and daunting task. We describe a novel approach for systems-level interpretation of microarray expression data using a manually constructed “overview” pathway depicting the main cellular signaling channels (Atlas of Signaling). Currently, the developed pathway focuses on signal transduction from surface receptors to transcription factors and further transcriptional regulation of cellular “workhorse” proteins. We show how the constructed Atlas of Signaling in combination with an enrichment analysis algorithm allows quick identification and visualization of the main signaling cascades and cellular processes affected in a gene expression profiling experiment. We validate our approach using several publicly available gene expression datasets

    Hypertonicity-induced cation channels rescue cells from staurosporine-elicited apoptosis

    Get PDF
    Cell shrinkage is one of the earliest events during apoptosis. Cell shrinkage also occurs upon hypertonic stress, and previous work has shown that hypertonicity-induced cation channels (HICCs) underlie a highly efficient mechanism of recovery from cell shrinkage, called the regulatory volume increase (RVI), in many cell types. Here, the effects of HICC activation on staurosporine-induced apoptotic volume decrease (AVD) and apoptosis were studied in HeLa cells by means of electronic cell sizing and whole-cell patch-clamp recording. It was found that hypertonic stress reduces staurosporine-induced AVD and cell death (associated with caspase-3/7 activation and DNA fragmentation), and that this effect was actually due to activation of the HICC. On the other hand, staurosporine was found to significantly reduce osmotic HICC activation. It is concluded that AVD and RVI reflect two fundamentally distinct functional modes in terms of the activity and role of the HICC, in a shrunken cell. Our results also demonstrate, for the first time, the ability of the HICC to rescue cells from the process of programmed cell death

    Epigenetic Factors in Cancer Risk: Effect of Chemical Carcinogens on Global DNA Methylation Pattern in Human TK6 Cells

    Get PDF
    In the current study, we assessed the global DNA methylation changes in human lymphoblastoid (TK6) cells in vitro in response to 5 direct and 10 indirect-acting genotoxic agents. TK6 cells were exposed to the selected agents for 24 h in the presence and/or absence of S9 metabolic mix. Liquid chromatography-mass spectrometry was used for quantitative profiling of 5-methyl-2′-deoxycytidine. The effect of exposure on 5-methyl-2′-deoxycytidine between control and exposed cultures was assessed by applying the marginal model with correlated residuals on % global DNA methylation data. We reported the induction of global DNA hypomethylation in TK6 cells in response to S9 metabolic mix, under the current experimental settings. Benzene, hydroquinone, styrene, carbon tetrachloride and trichloroethylene induced global DNA hypomethylation in TK6 cells. Furthermore, we showed that dose did not have an effect on global DNA methylation in TK6 cells. In conclusion we report changes in global DNA methylation as an early event in response to agents traditionally considered as genotoxic

    SIK1/SOS2 networks: decoding sodium signals via calcium-responsive protein kinase pathways

    Get PDF
    Changes in cellular ion levels can modulate distinct signaling networks aimed at correcting major disruptions in ion balances that might otherwise threaten cell growth and development. Salt-inducible kinase 1 (SIK1) and salt overly sensitive 2 (SOS2) are key protein kinases within such networks in mammalian and plant cells, respectively. In animals, SIK1 expression and activity are regulated in response to the salt content of the diet, and in plants SOS2 activity is controlled by the salinity of the soil. The specific ionic stress (elevated intracellular sodium) is followed by changes in intracellular calcium; the calcium signals are sensed by calcium-binding proteins and lead to activation of SIK1 or SOS2. These kinases target major plasma membrane transporters such as the Na+,K+-ATPase in mammalian cells, and Na+/H+ exchangers in the plasma membrane and membranes of intracellular vacuoles of plant cells. Activation of these networks prevents abnormal increases in intracellular sodium concentration

    The Na+/H+ Exchanger Controls Deoxycholic Acid-Induced Apoptosis by a H+-Activated, Na+-Dependent Ionic Shift in Esophageal Cells

    Get PDF
    Apoptosis resistance is a hallmark of cancer cells. Typically, bile acids induce apoptosis. However during gastrointestinal (GI) tumorigenesis the cancer cells develop resistance to bile acid-induced cell death. To understand how bile acids induce apoptosis resistance we first need to identify the molecular pathways that initiate apoptosis in response to bile acid exposure. In this study we examined the mechanism of deoxycholic acid (DCA)-induced apoptosis, specifically the role of Na+/H+ exchanger (NHE) and Na+ influx in esophageal cells. In vitro studies revealed that the exposure of esophageal cells (JH-EsoAd1, CP-A) to DCA (0.2 mM -0.5 mM) caused lysosomal membrane perturbation and transient cytoplasmic acidification. Fluorescence microscopy in conjunction with atomic absorption spectrophotometry demonstrated that this effect on lysosomes correlated with influx of Na+, subsequent loss of intracellular K+, an increase of Ca2+ and apoptosis. However, ethylisopropyl-amiloride (EIPA), a selective inhibitor of NHE, prevented Na+, K+ and Ca2+ changes and caspase 3/7 activation induced by DCA. Ouabain and amphotericin B, two drugs that increase intracellular Na+ levels, induced similar changes as DCA (ion imbalance, caspase3/7 activation). On the contrary, DCA-induced cell death was inhibited by medium with low a Na+ concentrations. In the same experiments, we exposed rat ileum ex-vivo to DCA with or without EIPA. Severe tissue damage and caspase-3 activation was observed after DCA treatment, but EIPA almost fully prevented this response. In summary, NHE-mediated Na+ influx is a critical step leading to DCA-induced apoptosis. Cells tolerate acidification but evade DCA-induced apoptosis if NHE is inhibited. Our data suggests that suppression of NHE by endogenous or exogenous inhibitors may lead to apoptosis resistance during GI tumorigenesis

    Development of a novel experimental In vitro model of isothiocyanate-induced apoptosis in human malignant melanoma cells

    Get PDF
    Background: Isothiocyanates are constituents of cruciferous vegetables which have been associated with reduced cancer risk partially through their ability to induce apoptosis in malignant cells including melanoma. Materials and Methods: We have utilized human malignant melanoma (A375), epidermoid carcinoma (A431) and immortalized keratinocyte (HaCaT) cells exposed to various isothiocyanates, under different experimental conditions. Results: An experimental in vitro model utilizing low isothiocyanate concentrations (0.1-5 μM for 48 h with all treatments being refreshed after 24h) was shown to be (i) most efficient in exerting an anti-cancer effect when compared to higher concentrations (5-100 μM for 24 or 48 h added as a single bolus) and (ii) specific to A375 cells while A431 and HaCaT cells remained unaffected. Such effect involved the activation of several caspases including (iii) initiator caspases 8, 9, 4 (indicating the involvement of intrinsic, extrinsic and endoplasmic reticulum-based pathways) and (iv) effector caspases 3, 7 and 6. Conclusion: Utilization of low isothiocyanate concentrations (under the conditions described herein) exerts an anti-cancer effect specific to human malignant melanoma cells thus providing a therapeutic basis for their utilization in management of the disease
    corecore