52 research outputs found
A multi-factorial analysis of response to warfarin in a UK prospective cohort
Background Warfarin is the most widely used oral anticoagulant worldwide, but it has a narrow therapeutic index which necessitates constant monitoring of anticoagulation response. Previous genome-wide studies have focused on identifying factors explaining variance in stable dose, but have not explored the initial patient response to warfarin, and a wider range of clinical and biochemical factors affecting both initial and stable dosing with warfarin. Methods A prospective cohort of 711 patients starting warfarin was followed up for 6 months with analyses focusing on both non-genetic and genetic factors. The outcome measures used were mean weekly warfarin dose (MWD), stable mean weekly dose (SMWD) and international normalised ratio (INR) > 4 during the first week. Samples were genotyped on the Illumina Human610-Quad chip. Statistical analyses were performed using Plink and R. Results VKORC1 and CYP2C9 were the major genetic determinants of warfarin MWD and SMWD, with CYP4F2 having a smaller effect. Age, height, weight, cigarette smoking and interacting medications accounted for less than 20 % of the variance. Our multifactorial analysis explained 57.89 % and 56.97 % of the variation for MWD and SMWD, respectively. Genotypes for VKORC1 and CYP2C9*3, age, height and weight, as well as other clinical factors such as alcohol consumption, loading dose and concomitant drugs were important for the initial INR response to warfarin. In a small subset of patients for whom data were available, levels of the coagulation factors VII and IX (highly correlated) also played a role. Conclusion Our multifactorial analysis in a prospectively recruited cohort has shown that multiple factors, genetic and clinical, are important in determining the response to warfarin. VKORC1 and CYP2C9 genetic polymorphisms are the most important determinants of warfarin dosing, and it is highly unlikely that other common variants of clinical importance influencing warfarin dosage will be found. Both VKORC1 and CYP2C9*3 are important determinants of the initial INR response to warfarin. Other novel variants, which did not reach genome-wide significance, were identified for the different outcome measures, but need replication
Disease Severity in Patients Infected with Leishmania mexicana Relates to IL-1ÎČ
Leishmania mexicana can cause both localized (LCL) and diffuse (DCL) cutaneous leishmaniasis, yet little is known about factors regulating disease severity in these patients. We analyzed if the disease was associated with single nucleotide polymorphisms (SNPs) in IL-1ÎČ (â511), CXCL8 (â251) and/or the inhibitor IL-1RA (+2018) in 58 Mexican mestizo patients with LCL, 6 with DCL and 123 control cases. Additionally, we analyzed the in vitro production of IL-1ÎČ by monocytes, the expression of this cytokine in sera of these patients, as well as the tissue distribution of IL-1ÎČ and the number of parasites in lesions of LCL and DCL patients. Our results show a significant difference in the distribution of IL-1ÎČ (â511 C/T) genotypes between patients and controls (heterozygous OR), with respect to the reference group CC, which was estimated with a value of 3.23, 95% CIâ=â(1.2, 8.7) and p-valueâ=â0.0167), indicating that IL-1ÎČ (â511 C/T) represents a variable influencing the risk to develop the disease in patients infected with Leishmania mexicana. Additionally, an increased in vitro production of IL-1ÎČ by monocytes and an increased serum expression of the cytokine correlated with the severity of the disease, since it was significantly higher in DCL patients heavily infected with Leishmania mexicana. The distribution of IL-1ÎČ in lesions also varied according to the number of parasites harbored in the tissues: in heavily infected LCL patients and in all DCL patients, the cytokine was scattered diffusely throughout the lesion. In contrast, in LCL patients with lower numbers of parasites in the lesions, IL-1ÎČ was confined to the cells. These data suggest that IL-1ÎČ possibly is a key player determining the severity of the disease in DCL patients. The analysis of polymorphisms in CXCL8 and IL-1RA showed no differences between patients with different disease severities or between patients and controls
Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 Ă 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
Genetic drivers of heterogeneity in type 2 diabetes pathophysiology
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (Pâ<â5âĂâ10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p
Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (Pâ<â5âĂâ10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Prevalence and Predictors of Tuberculosis Coinfection among HIV-Seropositive Patients Attending the Aminu Kano Teaching Hospital, Northern Nigeria
Background: The HIV/AIDS epidemic has been accompanied by a severe epidemic of tuberculosis (TB), although
the prevalence of coinfection is largely unknown, especially in developing countries, including Nigeria. The aim of this study was to determine the prevalence and predictors of TB coinfection among HIV-seropositive Nigerians.
Methods: The case files of HIV/AIDS patients attending Aminu Kano Teaching Hospital, Nigeria from January to
December 2006 were reviewed.
Results: A total of 1320 HIV/AIDS patients had complete records and were reviewed, among which 138 (10.5%)
were coinfected with TB (95% CI, 8.9% to 12.2%). Pulmonary TB was diagnosed in 103 (74.6%) patients, among
whom only 18 (17.5%) were sputum-positive. Fifty (36.2%) coinfected patients had some type of extrapulmonary TB
(EPTB); 15 had both pulmonary TB and EPTB. Among the 35 patients with EPTB only, 20 (57.1%) had abdominal
TB, 5 (14.3%) had TB adenitis, 5 (14.3%) had spinal TB, 3 (8.6%) were being monitored for tuberculous meningitis,
and 1 (2.9%) each had renal TB and tuberculous adrenalitis. The highest prevalence of TB, 13.7% (n = 28), was seen
among patients aged 41â50 years. TB coinfection was significantly associated with marital status, WHO clinical
stage, and CD4 count. Marital status (OR, 2.1; 95% CI, 1.28â3.59; P = 0.04), WHO clinical stage at presentation
(4.81; 1.42â8.34; P = 0.001), and baseline CD4 count (2.71; 1.51â6.21; P = 0.02) remained significant predictors
after adjustment for confounding.
Conclusions: The moderately high prevalence of TB among HIV-seropositive patients underscores the urgent need
for strategies that lead to rapid identification and treatment of coinfection with active or latent TB
Recommended from our members
Theory, observation, and ultrafast response of the hybrid anapole regime in light scattering
Modern nanophotonics has witnessed the rise of "electric anapoles" (EDAs), destructive interferences of electric and toroidal electric dipoles, actively exploited to resonantly decrease radiation from nanoresonators. However, the inherent duality in Maxwell equations suggests the intriguing possibility of "magnetic anapoles," involving a nonradiating composition of a magnetic dipole and a magnetic toroidal dipole. Here, a hybrid anapole (HA) of mixed electric and magnetic character is predicted and observed experimentally via dark field spectroscopy, with all the dominant multipoles being suppressed by the toroidal terms in a nanocylinder. Breaking the spherical symmetry allows to overlap up to four anapoles stemming from different multipoles with just two tuning parameters. This effect is due to a symmetry-allowed connection between the resonator multipolar response and its eigenstates. The authors delve into the physics of such current configurations in the stationary and transient regimes and explore new ultrafast phenomena arising at sub-picosecond timescales, associated with the HA dynamics. The theoretical results allow the design of non-Huygens metasurfaces featuring a dual functionality: perfect transparency in the stationary regime and controllable ultrashort pulse beatings in the transient. Besides offering significant advantages with respect to EDAs, HAs can play an essential role in developing the emerging field of ultrafast resonant phenomena
- âŠ