41 research outputs found

    The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mannoproteins construct the outer cover of the fungal cell wall. The covalently linked cell wall protein Ccw12p is an abundant mannoprotein. It is considered as crucial structural cell wall component since in baker's yeast the lack of <it>CCW12 </it>results in severe cell wall damage and reduced mating efficiency.</p> <p>Results</p> <p>In order to explore the function of <it>CCW12</it>, we performed a Synthetic Genetic Analysis (SGA) and identified genes that are essential in the absence of <it>CCW12</it>. The resulting interaction network identified 21 genes involved in cell wall integrity, chitin synthesis, cell polarity, vesicular transport and endocytosis. Among those are <it>PFD1</it>, <it>WHI3</it>, <it>SRN2</it>, <it>PAC10</it>, <it>FEN1 </it>and <it>YDR417C</it>, which have not been related to cell wall integrity before. We correlated our results with genetic interaction networks of genes involved in glucan and chitin synthesis. A core of genes essential to maintain cell integrity in response to cell wall stress was identified. In addition, we performed a large-scale transcriptional analysis and compared the transcriptional changes observed in mutant <it>ccw12</it>Δ with transcriptomes from studies investigating responses to constitutive or acute cell wall damage. We identified a set of genes that are highly induced in the majority of the mutants/conditions and are directly related to the cell wall integrity pathway and cell wall compensatory responses. Among those are <it>BCK1</it>, <it>CHS3</it>, <it>EDE1</it>, <it>PFD1</it>, <it>SLT2 </it>and <it>SLA1 </it>that were also identified in the SGA. In contrast, a specific feature of mutant <it>ccw12</it>Δ is the transcriptional repression of genes involved in mating. Physiological experiments substantiate this finding. Further, we demonstrate that Ccw12p is present at the cell periphery and highly concentrated at the presumptive budding site, around the bud, at the septum and at the tip of the mating projection.</p> <p>Conclusions</p> <p>The combination of high throughput screenings, phenotypic analyses and localization studies provides new insight into the function of Ccw12p. A compensatory response, culminating in cell wall remodelling and transport/recycling pathways is required to buffer the loss of <it>CCW12</it>. Moreover, the enrichment of Ccw12p in bud, septum and mating projection is consistent with a role of Ccw12p in preserving cell wall integrity at sites of active growth.</p> <p>The microarray data produced in this analysis have been submitted to NCBI GEO database and GSE22649 record was assigned.</p

    Comprehensive molecular characterization of the hippo signaling pathway in cancer

    Get PDF
    Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era

    Yeast G1 cyclins are unstable in G1 phase

    No full text
    In most eukaryotes, commitment to cell division occurs in late G1 phase at an event called Start in the yeast Saccharomyces cerevisiae, and called the restriction point in mammalian cells. Start is triggered by the cyclin-dependent kinase Cdc28 and three rate-limiting activators, the G1 cyclins Cln1, Cln2 and Cln3. Cyclin accumulation in G1 is driven in part by the cell-cycle-regulated transcription of CLN1 and CLN2, which peaks at Start. CLN transcription is modulated by physiological signals that regulate G1 progression, but it is unclear whether Cln protein stability is cell-cycle-regulated. It has been suggested that once cells pass Start, Cln proteolysis is triggered by the mitotic cyclins Clb1, 2, 3 and 4. But here we show that G1 cyclins are unstable in G1 phase, and that Clb-Cdc28 activity is not needed fgr G1 cyclin turnover. Cln instability thus provides a means to couple Cln-Cdc28 activity to transcriptional regulation and protein synthetic rate in pre-Start G1 cells
    corecore