179 research outputs found

    Over and Under-utilization of Cyclooxygenase-2 Selective Inhibitors by Primary Care Physicians and Specialists: The Tortoise and the Hare Revisited

    Full text link
    To compare prescribing trends and appropriateness of use of traditional and cyclooxygenase-2 selective (COX-2) nonsteroidal anti-inflammatory drugs (NSAIDs) by primary care physicians (PCPs) and specialists. DESIGN : Retrospective cohort study. PATIENTS : One thousand five hundred and seventy-six adult patients continuously enrolled for at least 1 year with an independent practice association of a University-associated managed care plan who were started on a traditional NSAID or a COX-2 inhibitor from 1999 to 2002 and received at least 3 separate medication fills. MEASUREMENTS : Physician specialty was identified from office visits. Appropriateness of utilization was based on gastrointestinal risk characteristics. RESULTS : Primary care patients were younger and less likely to have comorbid conditions. Despite similar GI risk, COX-2 use among patients seen by PCPs was half that of patients seen by specialists (21% vs 44%, P <.001). While PCPs overused cyclooxygenase-2-specific inhibitors (COX-2s) less often than specialists (19% vs 41%, P <.001), they also tended to underuse COX-2s in patients who were at increased GI risk (46% vs 32%, P =.063). This represents a 3-fold and 8-fold difference in overuse versus underuse for PCPs and specialists, respectively. CONCLUSIONS : Using COX-2s as a model for physician adoption of new therapeutic agents, specialists were more likely to use these new medications for patients likely to benefit but were also significantly more likely to use them for patients without a clear indication. This study demonstrates the tension between appropriate adoption of innovative therapies for those individuals who would benefit from their use and those individuals who would receive no added clinical benefit but would incur added cost and be placed at increased risk.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75173/1/j.1525-1497.2006.00463.x.pd

    RNase 7 Contributes to the Cutaneous Defense against Enterococcus faecium

    Get PDF
    Background: Human skin is able to mount a fast response against invading microorganisms by the release of antimicrobial proteins such as the ribonuclease RNase 7. Because RNase 7 exhibits high activity against Enterococcus faecium the aim of this study was to further explore the role of RNase 7 in the cutaneous innate defense system against E. faecium. Methodology/Principal Findings: Absolute quantification using real-time PCR and ELISA revealed that primary keratinocytes expressed high levels of RNase 7. Immunohistochemistry showed RNase 7 expression in all epidermal layers of the skin with an intensification in the upper more differentiated layers. Furthermore, RNase 7 was secreted by keratinocytes in vitro and in vivo in a site-dependent way. RNase 7 was still active against E. faecium at low pH (5.5) or high NaCl (150 mM) concentration and the bactericidal activity of RNase 7 against E. faecium required no ribonuclease activity as shown by recombinant RNase 7 lacking enzymatic activity. To further explore the role of RNase 7 in cutaneous defense against E. faecium, we investigated whether RNase 7 contributes to the E. faecium killing activity of skin extracts derived from stratum corneum. Treatment of the skin extract with an RNase 7 specific antibody, which neutralizes the antimicrobial activity of RNase 7, diminished its E. faecium killing activity. Conclusions/Significance: Our data indicate that RNase 7 contributes to the E. faecium-killing activity of skin extracts an

    Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution

    Get PDF
    BACKGROUND: The functional consequences of whole genome duplications in vertebrate evolution are not fully understood. It remains unclear, for instance, why paralogues were retained in some gene families but extensively lost in others. Cdx homeobox genes encode conserved transcription factors controlling posterior development across diverse bilaterians. These genes are part of the ParaHox gene cluster. Multiple Cdx copies were retained after genome duplication, raising questions about how functional divergence, overlap, and redundancy respectively contributed to their retention and evolutionary fate. RESULTS: We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xenopus tropicalis followed by RNA-seq. We found that one paralogue, Cdx4, has a much stronger effect on gene expression than the others, including a strong regulatory effect on FGF and Wnt genes. Functional annotation revealed distinct and overlapping roles and subtly different temporal windows of action for each gene. The data also reveal a colinear-like effect of Cdx genes on Hox genes, with repression of Hox paralogy groups 1 and 2, and activation increasing from Hox group 5 to 11. We also highlight cases in which duplicated genes regulate distinct paralogous targets revealing pathway elaboration after whole genome duplication. CONCLUSIONS: Despite shared core pathways, Cdx paralogues have acquired distinct regulatory roles during development. This implies that the degree of functional overlap between paralogues is relatively low and that gene expression pattern alone should be used with caution when investigating the functional evolution of duplicated genes. We therefore suggest that developmental programmes were extensively rewired after whole genome duplication in the early evolution of vertebrates

    Multiscale modelling of auxin transport in the plant-root elongation zone

    Get PDF
    In the root elongation zone of a plant, the hormone auxin moves in a polar manner due to active transport facilitated by spatially distributed influx and efflux carriers present on the cell membranes. To understand how the cell-scale active transport and passive diffusion combine to produce the effective tissue-scale flux, we apply asymptotic methods to a cell-based model of auxin transport to derive systematically a continuum description from the spatially discrete one. Using biologically relevant parameter values, we show how the carriers drive the dominant tissue-scale auxin flux and we predict how the overall auxin dynamics are affected by perturbations to these carriers, for example, in knockout mutants. The analysis shows how the dominant behaviour depends on the cells' lengths, and enables us to assess the relative importance of the diffusive auxin flux through the cell wall. Other distinguished limits are also identified and their potential roles discussed. As well as providing insight into auxin transport, the study illustrates the use of multiscale (cell to tissue) methods in deriving simplified models that retain the essential biology and provide understanding of the underlying dynamics

    The Ecology of Antibiotic Use in the ICU: Homogeneous Prescribing of Cefepime but Not Tazocin Selects for Antibiotic Resistant Infection

    Get PDF
    Background: Antibiotic homogeneity is thought to drive resistance but in vivo data are lacking. In this study, we determined the impact of antibiotic homogeneity per se, and of cefepime versus antipseudomonal penicillin/beta-lactamase inhibitor combinations (APP-beta), on the likelihood of infection or colonisation with antibiotic resistant bacteria and/or two commonly resistant nosocomial pathogens (methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa). A secondary question was whether antibiotic cycling was associated with adverse outcomes including mortality, length of stay, and antibiotic resistance
    corecore