1,553 research outputs found

    Transoral laser surgery for laryngeal carcinoma: has Steiner achieved a genuine paradigm shift in oncological surgery?

    Get PDF
    Transoral laser microsurgery applies to the piecemeal removal of malignant tumours of the upper aerodigestive tract using the CO2 laser under the operating microscope. This method of surgery is being increasingly popularised as a single modality treatment of choice in early laryngeal cancers (T1 and T2) and occasionally in the more advanced forms of the disease (T3 and T4), predomi- nantly within the supraglottis. Thomas Kuhn, the American physicist turned philosopher and historian of science, coined the phrase ‘paradigm shift’ in his groundbreaking book The Structure of Scientific Revolutions. He argued that the arrival of the new and often incompatible idea forms the core of a new paradigm, the birth of an entirely new way of thinking. This article discusses whether Steiner and col- leagues truly brought about a paradigm shift in oncological surgery. By rejecting the principle of en block resection and by replacing it with the belief that not only is it oncologically safe to cut through the substance of the tumour but in doing so one can actually achieve better results, Steiner was able to truly revolutionise the man- agement of laryngeal cancer. Even though within this article the repercussions of his insight are limited to the upper aerodigestive tract oncological surgery, his willingness to question other peoples’ dogma makes his contribution truly a genuine paradigm shift

    Simulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)

    Get PDF
    When operating near the ground beneath a Vertical/Short Take-Off and Landing (VSTOL) aircraft a complex turbulent 3D flow is generated. This flow field can be represented by the configuration of twin impinging jets in a cross-flow. Studying these jets is a significant parameter for the design of VTOL aircraft. This flowfield during very low speed or hover flight operations is very complex and time dependent. An important number of experimental researches and simulations have been carried out to be able to understand much better these flows related with powered lift vehicles. Computational Fluid Dynamics (CFD) approach will be used in this paper work for simulation purposes of a single and twin impinging jet through and without crossflow

    Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours

    Get PDF
    Although compulsive sexual behaviour (CSB) has been conceptualized as a "behavioural" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions

    Towards quantum computing with single atoms and optical cavities on atom chips

    Full text link
    We report on recent developments in the integration of optical microresonators into atom chips and describe some fabrication and implementation challenges. We also review theoretical proposals for quantum computing with single atoms based on the observation of photons leaking through the cavity mirrors. The use of measurements to generate entanglement can result in simpler, more robust and scalable quantum computing architectures. Indeed, we show that quantum computing with atom-cavity systems is feasible even in the presence of relatively large spontaneous decay rates and finite photon detector efficiencies.Comment: 14 pages, 6 figure

    Structure–activity relationships on the odor detectability of homologous carboxylic acids by humans

    Get PDF
    We measured concentration detection functions for the odor detectability of the homologs: formic, acetic, butyric, hexanoic, and octanoic acids. Subjects (14 ≤ n ≤ 18) comprised young (19–37 years), healthy, nonsmoker, and normosmic participants from both genders. Vapors were delivered by air dilution olfactometry, using a three-alternative forced-choice procedure against carbon-filtered air, and an ascending concentration approach. Delivered concentrations were established by gas chromatography (flame ionization detector) in parallel with testing. Group and individual olfactory functions were modeled by a sigmoid (logistic) equation from which two parameters are calculated: C, the odor detection threshold (ODT) and D, the steepness of the function. Thresholds declined with carbon chain length along formic, acetic, and butyric acid where they reached a minimum (ODTs = 514, 5.2, and 0.26 ppb by volume, respectively). Then, they increased for hexanoic (1.0 ppb) and octanoic (0.86 ppb) acid. Odor thresholds and interindividual differences in olfactory acuity among these young, normosmic participants were lower than traditionally thought and reported. No significant effects of gender on odor detectability were observed. The finding of an optimum molecular size for odor potency along homologs confirms a prediction made by a model of ODTs based on a solvation equation. We discuss the mechanistic implications of this model for the process of olfactory detection

    The Meissl scheme for the geodetic ellipsoid

    Get PDF
    We present a variant of the Meissl scheme to relate surface spherical harmonic coefficients of the disturbing potential of the Earth's gravity field on the surface of the geodetic ellipsoid to surface spherical harmonic coefficients of its first- and second-order normal derivatives on the same or any other ellipsoid. It extends the original (spherical) Meissl scheme, which only holds for harmonic coefficients computed from geodetic data on a sphere. In our scheme, a vector of solid spherical harmonic coefficients of one quantity is transformed into spherical harmonic coefficients of another quantity by pre-multiplication with a transformation matrix. This matrix is diagonal for transformations between spheres, but block-diagonal for transformations involving the ellipsoid. The computation of the transformation matrix involves an inversion if the original coefficients are defined on the ellipsoid. This inversion can be performed accurately and efficiently (i.e., without regularisation) for transformation among different gravity field quantities on the same ellipsoid, due to diagonal dominance of the matrices. However, transformations from the ellipsoid to another surface can only be performed accurately and efficiently for coefficients up to degree and order 520 due to numerical instabilities in the inversion

    Characterizing a scientific elite: the social characteristics of the most highly cited scientists in environmental science and ecology

    Get PDF
    In science, a relatively small pool of researchers garners a disproportionally large number of citations. Still, very little is known about the social characteristics of highly cited scientists. This is unfortunate as these researchers wield a disproportional impact on their fields, and the study of highly cited scientists can enhance our understanding of the conditions which foster highly cited work, the systematic social inequalities which exist in science, and scientific careers more generally. This study provides information on this understudied subject by examining the social characteristics and opinions of the 0.1% most cited environmental scientists and ecologists. Overall, the social characteristics of these researchers tend to reflect broader patterns of inequality in the global scientific community. However, while the social characteristics of these researchers mirror those of other scientific elites in important ways, they differ in others, revealing findings which are both novel and surprising, perhaps indicating multiple pathways to becoming highly cited

    Collegial nests can Foster Critical Thinking, Innovative Ideas, and Scientific Progress.

    Get PDF
    How can management and strategy scholars organize to generate more productive, more innovative, and more impactful research? With appropriate cultures and leaders, small and egalitarian discussion groups that we call “collegial nests” can become powerful generators of innovative ideas and creators of extraordinary scholars. Collegial nests need cultures that free participants to think critically, to cherish new viewpoints, and to speak freely without fear of ridicule. They also need leaders who model such cultures and facilitate frequent discussions. Two case examples illustrate how productive collegial nests can create better science and better scientists. To generate scientific innovation and progress on a large scale, many autonomous groups tackling related issues are desirable. Modern communication technology is making it feasible for groups to operate over large distances and to coordinate with each other at very low cost. Collegial nests offer greater potential for enhancing scholarly productivity and innovation than do attempts to regulate scholarship via hierarchical structures. Multiplicity can lower the probability of wasting resources on low-yield paths, egalitarian control can reduce the influence of vested interests, and a combination of shared goals and partial autonomy can integrate enthusiasm with sensible risk taking
    corecore